Importa datos para la clasificación de texto de etiqueta única
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Importa datos para la clasificación de texto con una sola etiqueta mediante el método import_data.
Explora más
Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:
Muestra de código
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],[],[],[],null,["Imports data for text classification single label using the import_data method.\n\nExplore further\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Create a dataset for training text classification models](/vertex-ai/docs/text-data/classification/create-dataset)\n\nCode sample \n\nJava\n\n\nBefore trying this sample, follow the Java setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Java API\nreference documentation](/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n import com.google.api.gax.longrunning.OperationFuture;\n import com.google.cloud.aiplatform.v1.DatasetName;\n import com.google.cloud.aiplatform.v1.DatasetServiceClient;\n import com.google.cloud.aiplatform.v1.DatasetServiceSettings;\n import com.google.cloud.aiplatform.v1.GcsSource;\n import com.google.cloud.aiplatform.v1.ImportDataConfig;\n import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;\n import com.google.cloud.aiplatform.v1.ImportDataResponse;\n import java.io.IOException;\n import java.util.Collections;\n import java.util.List;\n import java.util.concurrent.ExecutionException;\n import java.util.concurrent.TimeUnit;\n import java.util.concurrent.TimeoutException;\n\n public class ImportDataTextClassificationSingleLabelSample {\n\n public static void main(String[] args)\n throws IOException, InterruptedException, ExecutionException, TimeoutException {\n // TODO(developer): Replace these variables before running the sample.\n String project = \"YOUR_PROJECT_ID\";\n String datasetId = \"YOUR_DATASET_ID\";\n String gcsSourceUri =\n \"gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_text_source/[file.csv/file.jsonl]\";\n\n importDataTextClassificationSingleLabelSample(project, datasetId, gcsSourceUri);\n }\n\n static void importDataTextClassificationSingleLabelSample(\n String project, String datasetId, String gcsSourceUri)\n throws IOException, InterruptedException, ExecutionException, TimeoutException {\n DatasetServiceSettings datasetServiceSettings =\n DatasetServiceSettings.newBuilder()\n .setEndpoint(\"us-central1-aiplatform.googleapis.com:443\")\n .build();\n\n // Initialize client that will be used to send requests. This client only needs to be created\n // once, and can be reused for multiple requests. After completing all of your requests, call\n // the \"close\" method on the client to safely clean up any remaining background resources.\n try (DatasetServiceClient datasetServiceClient =\n DatasetServiceClient.create(datasetServiceSettings)) {\n String location = \"us-central1\";\n String importSchemaUri =\n \"gs://google-cloud-aiplatform/schema/dataset/ioformat/\"\n + \"text_classification_single_label_io_format_1.0.0.yaml\";\n\n GcsSource.Builder gcsSource = GcsSource.newBuilder();\n gcsSource.addUris(gcsSourceUri);\n DatasetName datasetName = DatasetName.of(project, location, datasetId);\n\n List\u003cImportDataConfig\u003e importDataConfigList =\n Collections.singletonList(\n ImportDataConfig.newBuilder()\n .setGcsSource(gcsSource)\n .setImportSchemaUri(importSchemaUri)\n .build());\n\n OperationFuture\u003cImportDataResponse, ImportDataOperationMetadata\u003e importDataResponseFuture =\n datasetServiceClient.importDataAsync(datasetName, importDataConfigList);\n System.out.format(\n \"Operation name: %s\\n\", importDataResponseFuture.getInitialFuture().get().getName());\n\n System.out.println(\"Waiting for operation to finish...\");\n ImportDataResponse importDataResponse = importDataResponseFuture.get(300, TimeUnit.SECONDS);\n System.out.format(\n \"Import Data Text Classification Response: %s\\n\", importDataResponse.toString());\n }\n }\n }\n\nNode.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n /**\n * TODO(developer): Uncomment these variables before running the sample.\\\n * (Not necessary if passing values as arguments)\n */\n\n // const datasetId = \"YOUR_DATASET_ID\";\n // const gcsSourceUri = \"YOUR_GCS_SOURCE_URI\";\n // eg. \"gs://\u003cyour-gcs-bucket\u003e/\u003cimport_source_path\u003e/[file.csv/file.jsonl]\"\n // const project = \"YOUR_PROJECT_ID\";\n // const location = 'YOUR_PROJECT_LOCATION';\n\n // Imports the Google Cloud Dataset Service Client library\n const {DatasetServiceClient} = require('@google-cloud/aiplatform');\n\n // Specifies the location of the api endpoint\n const clientOptions = {\n apiEndpoint: 'us-central1-aiplatform.googleapis.com',\n };\n const datasetServiceClient = new DatasetServiceClient(clientOptions);\n\n async function importDataTextClassificationSingleLabel() {\n const name = datasetServiceClient.datasetPath(project, location, datasetId);\n // Here we use only one import config with one source\n const importConfigs = [\n {\n gcsSource: {uris: [gcsSourceUri]},\n importSchemaUri:\n 'gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_single_label_io_format_1.0.0.yaml',\n },\n ];\n const request = {\n name,\n importConfigs,\n };\n\n // Import data request\n const [response] = await datasetServiceClient.importData(request);\n console.log(`Long running operation : ${response.name}`);\n\n // Wait for operation to complete\n const [importDataResponse] = await response.promise();\n\n console.log(\n `Import data text classification single label response : \\\n ${JSON.stringify(importDataResponse.result)}`\n );\n }\n importDataTextClassificationSingleLabel();\n\nPython\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google.cloud import aiplatform\n\n\n def import_data_text_classification_single_label_sample(\n project: str,\n dataset_id: str,\n gcs_source_uri: str,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n timeout: int = 1800,\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)\n import_configs = [\n {\n \"gcs_source\": {\"uris\": [gcs_source_uri]},\n \"import_schema_uri\": \"gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_single_label_io_format_1.0.0.yaml\",\n }\n ]\n name = client.dataset_path(project=project, location=location, dataset=dataset_id)\n response = client.import_data(name=name, import_configs=import_configs)\n print(\"Long running operation:\", response.operation.name)\n import_data_response = response.result(timeout=timeout)\n print(\"import_data_response:\", import_data_response)\n\nWhat's next\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]