Recupero di una valutazione di modelli per la regressione tabulare

Restituisce una valutazione del modello per la regressione tabulare utilizzando il metodo get_model_evaluation.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.aiplatform.v1.ModelEvaluation;
import com.google.cloud.aiplatform.v1.ModelEvaluationName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;

public class GetModelEvaluationTabularRegressionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // To obtain evaluationId run the code block below after setting modelServiceSettings.
    //
    // try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings))
    // {
    //   String location = "us-central1";
    //   ModelName modelFullId = ModelName.of(project, location, modelId);
    //   ListModelEvaluationsRequest modelEvaluationsrequest =
    //   ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();
    //   for (ModelEvaluation modelEvaluation :
    //     modelServiceClient.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {
    //       System.out.format("Model Evaluation Name: %s%n", modelEvaluation.getName());
    //   }
    // }
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String evaluationId = "YOUR_EVALUATION_ID";
    getModelEvaluationTabularRegression(project, modelId, evaluationId);
  }

  static void getModelEvaluationTabularRegression(
      String project, String modelId, String evaluationId) throws IOException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelEvaluationName modelEvaluationName =
          ModelEvaluationName.of(project, location, modelId, evaluationId);
      ModelEvaluation modelEvaluation = modelServiceClient.getModelEvaluation(modelEvaluationName);

      System.out.println("Get Model Evaluation Tabular Regression Response");
      System.out.format("\tName: %s\n", modelEvaluation.getName());
      System.out.format("\tMetrics Schema Uri: %s\n", modelEvaluation.getMetricsSchemaUri());
      System.out.format("\tMetrics: %s\n", modelEvaluation.getMetrics());
      System.out.format("\tCreate Time: %s\n", modelEvaluation.getCreateTime());
      System.out.format("\tSlice Dimensions: %s\n", modelEvaluation.getSliceDimensionsList());
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample
 * (not necessary if passing values as arguments). To obtain evaluationId,
 * instantiate the client and run the following the commands.
 */
// const parentName = `projects/${project}/locations/${location}/models/${modelId}`;
// const evalRequest = {
//   parent: parentName
// };
// const [evalResponse] = await modelServiceClient.listModelEvaluations(evalRequest);
// console.log(evalResponse);

// const modelId = 'YOUR_MODEL_ID';
// const evaluationId = 'YOUR_EVALUATION_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);

async function getModelEvaluationTabularRegression() {
  // Configure the parent resources
  const name = `projects/${project}/locations/${location}/models/${modelId}/evaluations/${evaluationId}`;
  const request = {
    name,
  };

  // Get model evaluation request
  const [response] = await modelServiceClient.getModelEvaluation(request);

  console.log('Get model evaluation tabular regression response');
  console.log(`\tName : ${response.name}`);
  console.log(`\tMetrics schema uri : ${response.metricsSchemaUri}`);
  console.log(`\tMetrics : ${JSON.stringify(response.metrics)}`);
  console.log(`\tCreate time : ${JSON.stringify(response.createTime)}`);
  console.log(`\tSlice dimensions : ${response.sliceDimensions}`);

  const modelExplanation = response.modelExplanation;
  console.log('\tModel explanation');
  if (!modelExplanation) {
    console.log('\t\t{}');
  } else {
    const meanAttributions = modelExplanation.meanAttributions;
    if (!meanAttributions) {
      console.log('\t\t\t []');
    } else {
      for (const meanAttribution of meanAttributions) {
        console.log('\t\tMean attribution');
        console.log(
          `\t\t\tBaseline output value : \
            ${meanAttribution.baselineOutputValue}`
        );
        console.log(
          `\t\t\tInstance output value : \
            ${meanAttribution.instanceOutputValue}`
        );
        console.log(
          `\t\t\tFeature attributions : \
            ${JSON.stringify(meanAttribution.featureAttributions)}`
        );
        console.log(`\t\t\tOutput index : ${meanAttribution.outputIndex}`);
        console.log(
          `\t\t\tOutput display name : \
            ${meanAttribution.outputDisplayName}`
        );
        console.log(
          `\t\t\tApproximation error : \
            ${meanAttribution.approximationError}`
        );
      }
    }
  }
}
getModelEvaluationTabularRegression();

Python

Prima di provare questo esempio, segui le istruzioni per la configurazione di Python nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Python Vertex AI documentazione di riferimento.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import aiplatform


def get_model_evaluation_tabular_regression_sample(
    project: str,
    model_id: str,
    evaluation_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    """
    To obtain evaluation_id run the following commands where LOCATION
    is the region where the model is stored, PROJECT is the project ID,
    and MODEL_ID is the ID of your model.

    model_client = aiplatform.gapic.ModelServiceClient(
        client_options={
            'api_endpoint':'LOCATION-aiplatform.googleapis.com'
            }
        )
    evaluations = model_client.list_model_evaluations(parent='projects/PROJECT/locations/LOCATION/models/MODEL_ID')
    print("evaluations:", evaluations)
    """
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.ModelServiceClient(client_options=client_options)
    name = client.model_evaluation_path(
        project=project, location=location, model=model_id, evaluation=evaluation_id
    )
    response = client.get_model_evaluation(name=name)
    print("response:", response)

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta Browser di esempio Google Cloud.