Spiegazione per il tabulare
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Ottiene la spiegazione per il tabulare utilizzando il metodo explain.
Esempio di codice
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],[],[],[],null,["# Explain for tabular\n\nGets explanation for tabular using the explain method.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from typing import Dict\n\n from google.cloud import aiplatform_v1beta1\n from google.protobuf import json_format\n from google.protobuf.struct_pb2 import Value\n\n\n def explain_tabular_sample(\n project: str,\n endpoint_id: str,\n instance_dict: Dict,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform_v1beta1.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html(client_options=client_options)\n # The format of each instance should conform to the deployed model's prediction input schema.\n instance = json_format.ParseDict(instance_dict, Value())\n instances = [instance]\n # tabular models do not have additional parameters\n parameters_dict = {}\n parameters = json_format.ParseDict(parameters_dict, Value())\n endpoint = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html#google_cloud_aiplatform_v1beta1_services_prediction_service_PredictionServiceClient_endpoint_path(\n project=project, location=location, endpoint=endpoint_id\n )\n response = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html#google_cloud_aiplatform_v1beta1_services_prediction_service_PredictionServiceClient_explain(\n endpoint=endpoint, instances=instances, parameters=parameters\n )\n print(\"response\")\n print(\" deployed_model_id:\", response.deployed_model_id)\n explanations = response.explanations\n for explanation in explanations:\n print(\" explanation\")\n # Feature attributions.\n attributions = explanation.attributions\n for attribution in attributions:\n print(\" attribution\")\n print(\" baseline_output_value:\", attribution.baseline_output_value)\n print(\" instance_output_value:\", attribution.instance_output_value)\n print(\" output_display_name:\", attribution.output_display_name)\n print(\" approximation_error:\", attribution.approximation_error)\n print(\" output_name:\", attribution.output_name)\n output_index = attribution.output_index\n for output_index in output_index:\n print(\" output_index:\", output_index)\n predictions = response.predictions\n for prediction in predictions:\n print(\" prediction:\", dict(prediction))\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]