데이터 라벨링 작업 삭제

delete_data_labeling_job 메서드를 사용하여 데이터 라벨링 작업을 삭제합니다.

코드 샘플

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DataLabelingJobName;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteDataLabelingJobSample {
  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String dataLabelingJobId = "YOUR_DATA_LABELING_JOB_ID";
    deleteDataLabelingJob(project, dataLabelingJobId);
  }

  static void deleteDataLabelingJob(String project, String dataLabelingJobId)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";

      DataLabelingJobName dataLabelingJobName =
          DataLabelingJobName.of(project, location, dataLabelingJobId);

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          jobServiceClient.deleteDataLabelingJobAsync(dataLabelingJobName);
      System.out.format("Operation name: %s\n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(300, TimeUnit.SECONDS);

      System.out.format("Deleted Data Labeling Job.");
    }
  }
}

Python

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Python 설정 안내를 따르세요. 자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

from google.cloud import aiplatform


def delete_data_labeling_job_sample(
    project: str,
    data_labeling_job_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    name = client.data_labeling_job_path(
        project=project, location=location, data_labeling_job=data_labeling_job_id
    )
    response = client.delete_data_labeling_job(name=name)
    print("Long running operation:", response.operation.name)
    delete_data_labeling_job_response = response.result(timeout=timeout)
    print("delete_data_labeling_job_response:", delete_data_labeling_job_response)

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.