Membuat pipeline pelatihan untuk perkiraan tabular

Membuat pipeline pelatihan untuk perkiraan tabel menggunakan metode create_training_pipeline.

Contoh kode

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def create_training_pipeline_tabular_forecasting_sample(
    project: str,
    display_name: str,
    dataset_id: str,
    model_display_name: str,
    target_column: str,
    time_series_identifier_column: str,
    time_column: str,
    time_series_attribute_columns: str,
    unavailable_at_forecast: str,
    available_at_forecast: str,
    forecast_horizon: int,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
    # set the columns used for training and their data types
    transformations = [
        {"auto": {"column_name": "date"}},
        {"auto": {"column_name": "state_name"}},
        {"auto": {"column_name": "county_fips_code"}},
        {"auto": {"column_name": "confirmed_cases"}},
        {"auto": {"column_name": "deaths"}},
    ]

    data_granularity = {"unit": "day", "quantity": 1}

    # the inputs should be formatted according to the training_task_definition yaml file
    training_task_inputs_dict = {
        # required inputs
        "targetColumn": target_column,
        "timeSeriesIdentifierColumn": time_series_identifier_column,
        "timeColumn": time_column,
        "transformations": transformations,
        "dataGranularity": data_granularity,
        "optimizationObjective": "minimize-rmse",
        "trainBudgetMilliNodeHours": 8000,
        "timeSeriesAttributeColumns": time_series_attribute_columns,
        "unavailableAtForecast": unavailable_at_forecast,
        "availableAtForecast": available_at_forecast,
        "forecastHorizon": forecast_horizon,
    }

    training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())

    training_pipeline = {
        "display_name": display_name,
        "training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_forecasting_1.0.0.yaml",
        "training_task_inputs": training_task_inputs,
        "input_data_config": {
            "dataset_id": dataset_id,
            "fraction_split": {
                "training_fraction": 0.8,
                "validation_fraction": 0.1,
                "test_fraction": 0.1,
            },
        },
        "model_to_upload": {"display_name": model_display_name},
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_training_pipeline(
        parent=parent, training_pipeline=training_pipeline
    )
    print("response:", response)

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.