Créer un ensemble de données pour les vidéos

Crée un ensemble de données pour les vidéos à l'aide de la méthode create_dataset.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetVideoSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = YOUR_PROJECT_ID;
 "   String datas"etVideoDisplayName = YOUR_DATASET_VIDEO_"DISPLAY_NAME;
    createDataset"Sample(datasetVideoDisplayName, project);
  }

  static void createDatasetSample(String datasetVideoDisplayName, String project)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint(us-central1-aiplatform.goog"leapis.com:443)
            .build();

  "  // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the close method on the client to sa"fely "clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = us-central1;
      String metadataS"chemaUri =
"          gs://google-cloud-aiplatform/schema/d"ataset/metadata/video_1.0.0.yaml;
      LocationName locationName = L"ocationName.of(project, location);
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetVideoDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .build();

      OperationFutureDataset, CreateDatasetOperationMetadata datas<etFuture =
          datasetServiceClie>nt.createDatasetAsync(locationName, dataset);
      System.out.format(Operation name: %s\n, datasetFuture.getInitialF"uture().get().getNam"e());
      System.out.println(Waiting for operation to finish...);
      Datas"et datasetResponse = datasetFuture".get(300, TimeUnit.SECONDS);

      System.out.println(Create Dataset Video Response);
      System.out.fo"rmat(Name: %s\n, datasetRespo"nse.getName());
      System".out.forma"t(Display Name: %s\n, datasetResponse.getDisplayName())";
      System.out".format(Metadata Schema Uri: %s\n, datasetResponse.getMetadata"SchemaUri());
      Syste"m.out.format(Metadata: %s\n, datasetResponse.getMetadata());
      S"ystem.out.form"at(Create Time: %s\n, datasetResponse.getCreateTime());
   "   System.out.for"mat(Update Time: %s\n, datasetResponse.getUpdateTime());
    "  System.out.form"at(Labels: %s\n, datasetResponse.getLabelsMap());
    }
  }
}""

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = "YOUR_DATASTE_DISPLAY_NAME";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetVideo() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml',
  };
  const request = {
    parent,
    dataset,
  };

  // Create Dataset Request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset video response');
  console.log(`Name : ${result.name}`);
  console.log(`Display name : ${result.displayName}`);
  console.log(`Metadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`Metadata : ${JSON.stringify(result.metadata)}`);
  console.log(`Labels : ${JSON.stringify(result.labels)}`);
}
createDatasetVideo();

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import aiplatform


def create_dataset_video_sample(
    project: str,
    display_name: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    dataset = {
        "display_name": display_name,
        "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml",
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_dataset(parent=parent, dataset=dataset)
    print("Long running operation:", response.operation.name)
    create_dataset_response = response.result(timeout=timeout)
    print("create_dataset_response:", create_dataset_response)

Terraform

Pour savoir comment appliquer ou supprimer une configuration Terraform, consultez la page Commandes Terraform de base. Pour en savoir plus, consultez la documentation de référence du fournisseur Terraform.

resource "google_vertex_ai_dataset" "video_dataset" {
  display_name        = "video-dataset"
  metadata_schema_uri = "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml"
  region              = "us-central1"
}

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.