Creazione di un job di etichettatura dati per l'apprendimento attivo

Crea un job di etichettatura dei dati per l'apprendimento attivo utilizzando il metodo create_data_labeling_job.

Esempio di codice

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import com.google.cloud.aiplatform.v1.ActiveLearningConfig;
import com.google.cloud.aiplatform.v1.DataLabelingJob;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;

public class CreateDataLabelingJobActiveLearningSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String displayName = "DISPLAY_NAME";
    String dataset = "DATASET";
    String instructionUri = "INSTRUCTION_URI";
    String inputsSchemaUri = "INPUTS_SCHEMA_URI";
    String annotationSpec = "ANNOTATION_SPEC";
    createDataLabelingJobActiveLearningSample(
        project, displayName, dataset, instructionUri, inputsSchemaUri, annotationSpec);
  }

  static void createDataLabelingJobActiveLearningSample(
      String project,
      String displayName,
      String dataset,
      String instructionUri,
      String inputsSchemaUri,
      String annotationSpec)
      throws IOException {
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      JsonArray jsonAnnotationSpecs = new JsonArray();
      jsonAnnotationSpecs.add(annotationSpec);
      JsonObject jsonInputs = new JsonObject();
      jsonInputs.add("annotation_specs", jsonAnnotationSpecs);
      Value.Builder inputsBuilder = Value.newBuilder();
      JsonFormat.parser().merge(jsonInputs.toString(), inputsBuilder);
      Value inputs = inputsBuilder.build();
      ActiveLearningConfig activeLearningConfig =
          ActiveLearningConfig.newBuilder().setMaxDataItemCount(1).build();

      String datasetName = DatasetName.of(project, location, dataset).toString();

      DataLabelingJob dataLabelingJob =
          DataLabelingJob.newBuilder()
              .setDisplayName(displayName)
              .addDatasets(datasetName)
              .setLabelerCount(1)
              .setInstructionUri(instructionUri)
              .setInputsSchemaUri(inputsSchemaUri)
              .setInputs(inputs)
              .putAnnotationLabels(
                  "aiplatform.googleapis.com/annotation_set_name",
                  "data_labeling_job_active_learning")
              .setActiveLearningConfig(activeLearningConfig)
              .build();
      LocationName parent = LocationName.of(project, location);
      DataLabelingJob response = client.createDataLabelingJob(parent, dataLabelingJob);
      System.out.format("response: %s\n", response);
      System.out.format("Name: %s\n", response.getName());
    }
  }
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione Python riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta API Python Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value


def create_data_labeling_job_active_learning_sample(
    project: str,
    display_name: str,
    dataset: str,
    instruction_uri: str,
    inputs_schema_uri: str,
    annotation_spec: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    inputs_dict = {"annotation_specs": [annotation_spec]}
    inputs = json_format.ParseDict(inputs_dict, Value())

    active_learning_config = {"max_data_item_count": 1}

    data_labeling_job = {
        "display_name": display_name,
        # Full resource name: projects/{project}/locations/{location}/datasets/{dataset_id}
        "datasets": [dataset],
        "labeler_count": 1,
        "instruction_uri": instruction_uri,
        "inputs_schema_uri": inputs_schema_uri,
        "inputs": inputs,
        "annotation_labels": {
            "aiplatform.googleapis.com/annotation_set_name": "data_labeling_job_active_learning"
        },
        "active_learning_config": active_learning_config,
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_data_labeling_job(
        parent=parent, data_labeling_job=data_labeling_job
    )
    print("response:", response)

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta Browser di esempio Google Cloud.