텍스트 분류를 위한 일괄 예측 작업 만들기

create_batch_prediction_job 메서드를 사용하여 텍스트 분류를 위한 일괄 예측 작업을 만듭니다.

더 살펴보기

이 코드 샘플이 포함된 자세한 문서는 다음을 참조하세요.

코드 샘플

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import com.google.api.gax.rpc.ApiException;
import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.ModelName;
import java.io.IOException;

public class CreateBatchPredictionJobTextClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String location = "us-central1";
    String displayName = "DISPLAY_NAME";
    String modelId = "MODEL_ID";
    String gcsSourceUri = "GCS_SOURCE_URI";
    String gcsDestinationOutputUriPrefix = "GCS_DESTINATION_OUTPUT_URI_PREFIX";
    createBatchPredictionJobTextClassificationSample(
        project, location, displayName, modelId, gcsSourceUri, gcsDestinationOutputUriPrefix);
  }

  static void createBatchPredictionJobTextClassificationSample(
      String project,
      String location,
      String displayName,
      String modelId,
      String gcsSourceUri,
      String gcsDestinationOutputUriPrefix)
      throws IOException {
    // The AI Platform services require regional API endpoints.
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      try {
        String modelName = ModelName.of(project, location, modelId).toString();
        GcsSource gcsSource = GcsSource.newBuilder().addUris(gcsSourceUri).build();
        BatchPredictionJob.InputConfig inputConfig =
            BatchPredictionJob.InputConfig.newBuilder()
                .setInstancesFormat("jsonl")
                .setGcsSource(gcsSource)
                .build();
        GcsDestination gcsDestination =
            GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
        BatchPredictionJob.OutputConfig outputConfig =
            BatchPredictionJob.OutputConfig.newBuilder()
                .setPredictionsFormat("jsonl")
                .setGcsDestination(gcsDestination)
                .build();
        BatchPredictionJob batchPredictionJob =
            BatchPredictionJob.newBuilder()
                .setDisplayName(displayName)
                .setModel(modelName)
                .setInputConfig(inputConfig)
                .setOutputConfig(outputConfig)
                .build();
        LocationName parent = LocationName.of(project, location);
        BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
        System.out.format("response: %s\n", response);
      } catch (ApiException ex) {
        System.out.format("Exception: %s\n", ex.getLocalizedMessage());
      }
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const batchPredictionDisplayName = 'YOUR_BATCH_PREDICTION_DISPLAY_NAME';
// const modelId = 'YOUR_MODEL_ID';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const gcsDestinationOutputUriPrefix = 'YOUR_GCS_DEST_OUTPUT_URI_PREFIX';
//    eg. "gs://<your-gcs-bucket>/destination_path"
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Job Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function createBatchPredictionJobTextClassification() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const modelName = `projects/${project}/locations/${location}/models/${modelId}`;

  const inputConfig = {
    instancesFormat: 'jsonl',
    gcsSource: {uris: [gcsSourceUri]},
  };
  const outputConfig = {
    predictionsFormat: 'jsonl',
    gcsDestination: {outputUriPrefix: gcsDestinationOutputUriPrefix},
  };
  const batchPredictionJob = {
    displayName: batchPredictionDisplayName,
    model: modelName,
    inputConfig,
    outputConfig,
  };
  const request = {
    parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);

  console.log('Create batch prediction job text classification response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createBatchPredictionJobTextClassification();

Python

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Python 설정 안내를 따르세요. 자세한 내용은 Vertex AI Python API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value


def create_batch_prediction_job_text_classification_sample(
    project: str,
    display_name: str,
    model_name: str,
    gcs_source_uri: str,
    gcs_destination_output_uri_prefix: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    model_parameters_dict = {}
    model_parameters = json_format.ParseDict(model_parameters_dict, Value())

    batch_prediction_job = {
        "display_name": display_name,
        # Format: 'projects/{project}/locations/{location}/models/{model_id}'
        "model": model_name,
        "model_parameters": model_parameters,
        "input_config": {
            "instances_format": "jsonl",
            "gcs_source": {"uris": [gcs_source_uri]},
        },
        "output_config": {
            "predictions_format": "jsonl",
            "gcs_destination": {"output_uri_prefix": gcs_destination_output_uri_prefix},
        },
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_batch_prediction_job(
        parent=parent, batch_prediction_job=batch_prediction_job
    )
    print("response:", response)

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.