Smartphoneaudio mit optimierten Modellen transkribieren

In dieser Anleitung wird gezeigt, wie Sie mithilfe von Cloud Speech-to-Text die Audiospur von einem Smartphone transkribieren.

Audiodateien und -daten können aus vielen verschiedenen Quellen stammen, z. B. von der Mailbox eines Smartphones oder von einer Tonspur einer Videodatei.

Speech-to-Text kann eines von mehreren Modellen für maschinelles Lernen verwenden, um Audiodateien so zu transkribieren, dass sie möglichst genau dem ursprünglichen Audiomaterial entsprechen. Sie erhalten bei der Sprachtranskription bessere Ergebnisse, wenn Sie die Quelle dieses Materials angeben. Speech-to-Text kann die Audiodateien dann mit einem Modell für maschinelles Lernen verarbeiten, das speziell für die Art von Daten trainiert wurde, die in der Audiodatei enthalten sind.

Ziele

  • Audiotranskriptionsanfrage für Audiodaten, die von einem Smartphone aufgezeichnet wurden (z. B. Mailboxnachricht), an Speech-to-Text senden
  • Optimiertes Spracherkennungsmodell für eine Audiotranskriptionsanfrage angeben

Kosten

In dieser Anleitung werden kostenpflichtige Komponenten der Cloud Platform verwendet, darunter:

  • Speech-to-Text

Der Preisrechner kann eine Kostenschätzung anhand Ihrer voraussichtlichen Nutzung generieren. Neuen Cloud Platform-Nutzern steht möglicherweise eine kostenlose Testversion zur Verfügung.

Hinweis

Diese Anleitung setzt Folgendes voraus:

Anfrage senden

Wenn die mit einem Smartphone aufgenommenen Audiodaten (z. B. ein Anruf oder eine Mailboxnachricht) möglichst genau transkribiert werden sollen, setzen Sie das Feld model in der Nutzlast RecognitionConfig auf phone_call. Das Feld model teilt der Speech-to-Text API mit, welches Spracherkennungsmodell für die Transkriptionsanfrage verwendet werden soll.

Sie können die Ergebnisse der Transkription von Smartphone-Audiodaten verbessern. Dazu verwenden Sie ein optimiertes Modell. Setzen Sie für ein erweitertes Modell das Feld useEnhanced in der RecognitionConfig-Nutzlast auf true.

Die folgenden Codebeispiele zeigen, wie beim Aufrufen von Speech-to-Text ein bestimmtes Transkriptionsmodell ausgewählt wird.

Protokoll

Ausführliche Informationen finden Sie unter dem API-Endpunkt speech:recognize.

Für eine synchrone Spracherkennung senden Sie eine POST-Anfrage und geben den entsprechenden Anfragetext an. Das folgende Beispiel zeigt eine POST-Anfrage mit curl. In diesem Beispiel wird das Zugriffstoken für ein Dienstkonto verwendet, das mit dem Google Cloud CLI für das Projekt eingerichtet wurde. Anleitungen zur Installation der gcloud CLI zur Einrichtung eines Dienstkontos für ein Projekt und zur Anforderung eines Zugriffstokens finden Sie in der Kurzanleitung.

curl -s -H "Content-Type: application/json" \
    -H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
    https://speech.googleapis.com/v1/speech:recognize \
    --data '{
    "config": {
        "encoding": "LINEAR16",
        "languageCode": "en-US",
        "enableWordTimeOffsets": false,
        "enableAutomaticPunctuation": true,
        "model": "phone_call",
        "useEnhanced": true
    },
    "audio": {
        "uri": "gs://cloud-samples-tests/speech/commercial_mono.wav"
    }
}'

Weitere Informationen zum Konfigurieren des Anfragetexts erhalten Sie in der Referenzdokumentation zu RecognitionConfig.

Wenn die Anfrage erfolgreich ist, gibt der Server den HTTP-Statuscode 200 OK und die Antwort im JSON-Format zurück:

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "Hi, I'd like to buy a Chromecast. I was wondering whether you could help me with that.",
          "confidence": 0.8930228
        }
      ],
      "resultEndTime": "5.640s"
    },
    {
      "alternatives": [
        {
          "transcript": " Certainly, which color would you like? We are blue black and red.",
          "confidence": 0.9101991
        }
      ],
      "resultEndTime": "10.220s"
    },
    {
      "alternatives": [
        {
          "transcript": " Let's go with the black one.",
          "confidence": 0.8818244
        }
      ],
      "resultEndTime": "13.870s"
    },
    {
      "alternatives": [
        {
          "transcript": " Would you like the new Chromecast Ultra model or the regular Chromecast?",
          "confidence": 0.94733626
        }
      ],
      "resultEndTime": "18.460s"
    },
    {
      "alternatives": [
        {
          "transcript": " Regular Chromecast is fine. Thank you. Okay. Sure. Would you like to ship it regular or Express?",
          "confidence": 0.9519095
        }
      ],
      "resultEndTime": "25.930s"
    },
    {
      "alternatives": [
        {
          "transcript": " Express, please.",
          "confidence": 0.9101229
        }
      ],
      "resultEndTime": "28.260s"
    },
    {
      "alternatives": [
        {
          "transcript": " Terrific. It's on the way. Thank you. Thank you very much. Bye.",
          "confidence": 0.9321616
        }
      ],
      "resultEndTime": "34.150s"
    }
 ]
}

Go


func enhancedModel(w io.Writer, path string) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	// path = "../testdata/commercial_mono.wav"
	data, err := ioutil.ReadFile(path)
	if err != nil {
		return fmt.Errorf("ReadFile: %v", err)
	}

	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 8000,
			LanguageCode:    "en-US",
			UseEnhanced:     true,
			// A model must be specified to use enhanced model.
			Model: "phone_call",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Content{Content: data},
		},
	})
	if err != nil {
		return fmt.Errorf("Recognize: %v", err)
	}

	for i, result := range resp.Results {
		fmt.Fprintf(w, "%s\n", strings.Repeat("-", 20))
		fmt.Fprintf(w, "Result %d\n", i+1)
		for j, alternative := range result.Alternatives {
			fmt.Fprintf(w, "Alternative %d: %s\n", j+1, alternative.Transcript)
		}
	}
	return nil
}

Java

/**
 * Transcribe the given audio file using an enhanced model.
 *
 * @param fileName the path to an audio file.
 */
public static void transcribeFileWithEnhancedModel(String fileName) throws Exception {
  Path path = Paths.get(fileName);
  byte[] content = Files.readAllBytes(path);

  try (SpeechClient speechClient = SpeechClient.create()) {
    // Get the contents of the local audio file
    RecognitionAudio recognitionAudio =
        RecognitionAudio.newBuilder().setContent(ByteString.copyFrom(content)).build();

    // Configure request to enable enhanced models
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            .setSampleRateHertz(8000)
            .setUseEnhanced(true)
            // A model must be specified to use enhanced model.
            .setModel("phone_call")
            .build();

    // Perform the transcription request
    RecognizeResponse recognizeResponse = speechClient.recognize(config, recognitionAudio);

    // Print out the results
    for (SpeechRecognitionResult result : recognizeResponse.getResultsList()) {
      // There can be several alternative transcripts for a given chunk of speech. Just use the
      // first (most likely) one here.
      SpeechRecognitionAlternative alternative = result.getAlternatives(0);
      System.out.format("Transcript: %s\n\n", alternative.getTranscript());
    }
  }
}

Node.js

// Imports the Google Cloud client library for Beta API
/**
 * TODO(developer): Update client library import to use new
 * version of API when desired features become available
 */
const speech = require('@google-cloud/speech').v1p1beta1;
const fs = require('fs');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  languageCode: languageCode,
  useEnhanced: true,
  model: 'phone_call',
};
const audio = {
  content: fs.readFileSync(filename).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file
const [response] = await client.recognize(request);
response.results.forEach(result => {
  const alternative = result.alternatives[0];
  console.log(alternative.transcript);
});

Python

import io

from google.cloud import speech

client = speech.SpeechClient()

# path = 'resources/commercial_mono.wav'
with io.open(path, "rb") as audio_file:
    content = audio_file.read()

audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=8000,
    language_code="en-US",
    use_enhanced=True,
    # A model must be specified to use enhanced model.
    model="phone_call",
)

response = client.recognize(config=config, audio=audio)

for i, result in enumerate(response.results):
    alternative = result.alternatives[0]
    print("-" * 20)
    print("First alternative of result {}".format(i))
    print("Transcript: {}".format(alternative.transcript))

Weitere Sprachen

C#: Folgen Sie der Anleitung zur Einrichtung von C# auf der Seite "Clientbibliotheken" und rufen Sie dann die Speech-to-Text-Referenzdokumentation für .NET auf.

PHP: Folgen Sie der Anleitung zur Einrichtung von PHP auf der Seite "Clientbibliotheken" und rufen Sie dann die Speech-to-Text-Referenzdokumentation für PHP auf.

Ruby: Folgen Sie der Anleitung zur Einrichtung von Ruby auf der Seite "Clientbibliotheken" und rufen Sie dann die Speech-to-Text-Referenzdokumentation für Ruby auf.

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

Projekt löschen

Am einfachsten vermeiden Sie weitere Kosten durch Löschen des für die Anleitung erstellten Projekts.

So löschen Sie das Projekt:

  1. Wechseln Sie in der Console zur Seite Ressourcen verwalten.

    Zur Seite „Ressourcen verwalten“

  2. Wählen Sie in der Projektliste das Projekt aus, das Sie löschen möchten, und klicken Sie dann auf Löschen.
  3. Geben Sie im Dialogfeld die Projekt-ID ein und klicken Sie auf Shut down (Beenden), um das Projekt zu löschen.

Instanzen löschen

So löschen Sie eine Compute Engine-Instanz:

  1. Rufen Sie in der Console die Seite VM-Instanzen auf:

    Zu Seite „VM-Instanzen“

  2. Klicken Sie auf das Kästchen für die Die Instanz, die Sie löschen möchten.
  3. Klicken Sie zum Löschen der Instanz auf Weitere Aktionen, dann auf Löschen, und folgen Sie dann der Anleitung.

Firewallregeln für das Standardnetzwerk löschen

So löschen Sie eine Firewallregel:

  1. Rufen Sie in der Console die Seite Firewall auf.

    Zur Firewall

  2. Klicken Sie auf das Kästchen für die Regel ist die Firewallregel, die Sie löschen möchten.
  3. Klicken Sie zum Löschen der Firewallregel auf Löschen.