Vorlage „JDBC für BigQuery“
Verwenden Sie die Dataproc Serverless-Vorlage „JDBC für BigQuery“, um Daten aus JDBC-Datenbanken in BigQuery zu extrahieren.
Diese Vorlage unterstützt die folgenden Datenbanken als Eingabe:
- MySQL
- PostgreSQL
- Microsoft SQL Server
- Oracle
Vorlage verwenden
Führen Sie die Vorlage mit der gcloud CLI oder der Dataproc API aus.
Ersetzen Sie folgende Werte, bevor sie einen der Befehlsdaten verwenden:
PROJECT_ID : erforderlich. Ihre Google Cloud Projekt-ID, die in den IAM-Einstellungen aufgeführt ist.REGION : erforderlich. Compute Engine-RegionTEMPLATE_VERSION : erforderlich. Geben Sielatest
für die neueste Vorlagenversion oder das Datum einer bestimmten Version an, z. B.2023-03-17_v0.1.0-beta
. Rufen Sie gs://dataproc-templates-binaries auf oder führen Siegcloud storage ls gs://dataproc-templates-binaries
aus, um eine Liste der verfügbaren Vorlagenversionen aufzurufen.SUBNET : Optional. Wenn kein Subnetz angegeben ist, wird das Subnetz in der angegebenen REGION imdefault
-Netzwerk ausgewählt.Beispiel:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
JDBC_CONNECTOR_CLOUD_STORAGE_PATH : erforderlich. Der vollständige Cloud Storage-Pfad, einschließlich des Dateinamens, unter dem die JAR-Datei des JDBC-Connectors gespeichert ist. Mit den folgenden Befehlen können Sie JDBC-Connectors zum Hochladen in Cloud Storage herunterladen:- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- Postgres SQL:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- Microsoft SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
DATASET undTABLE : Erforderlich. BigQuery-Ziel-Dataset und ‑Tabelle- Die folgenden Variablen werden verwendet, um die erforderliche
JDBC_CONNECTION_URL zu erstellen:JDBC_HOST JDBC_PORT JDBC_DATABASE oder, für Oracle,JDBC_SERVICE JDBC_USERNAME JDBC_PASSWORD
Erstellen Sie die JDBC_CONNECTION_URL in einem der folgenden connectorspezifischen Formate:
- MySQL:
jdbc:mysql://
JDBC_HOST :JDBC_PORT /JDBC_DATABASE ?user=JDBC_USERNAME &password=JDBC_PASSWORD - Postgres SQL:
jdbc:postgresql://
JDBC_HOST :JDBC_PORT /JDBC_DATABASE ?user=JDBC_USERNAME &password=JDBC_PASSWORD - Microsoft SQL Server:
jdbc:sqlserver://
JDBC_HOST :JDBC_PORT ;databaseName=JDBC_DATABASE ;user=JDBC_USERNAME ;password=JDBC_PASSWORD - Oracle:
jdbc:oracle:thin:@//
JDBC_HOST :JDBC_PORT /JDBC_SERVICE ?user=JDBC_USERNAME &password=JDBC_PASSWORD
DRIVER : erforderlich. Der JDBC-Treiber, der für die Verbindung verwendet wird:- MySQL:
com.mysql.cj.jdbc.Driver
- Postgres SQL:
org.postgresql.Driver
- Microsoft SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
QUERY : erforderlich. SQL-Abfrage zum Extrahieren von Daten aus JDBC.MODE : erforderlich. Schreibmodus für BigQuery-Ausgabe. Optionen:append
,overwrite
,ignore
odererrorifexists
.TEMP_BUCKET : erforderlich. Name des Cloud Storage-Buckets. Dieser Bucket wird für das Laden in BigQuery verwendet.Beispiel:
gs://dataproc-templates/jdbc_to_cloud_storage_output
INPUT_PARTITION_COLUMN ,LOWERBOUND ,UPPERBOUND ,PARTITIONS : Optional. Bei Verwendung müssen alle folgenden Parameter angegeben werden:- INPUT_PARTITION_COLUMN: Name der Partitionsspalte der JDBC-Eingabetabelle.
- LOWERBOUND: Untergrenze der JDBC-Eingabetabellenpartitionsspalte, die zum Bestimmen des Partitionsschritts verwendet wird.
- UPPERBOUND:Obergrenze der JDBC-Eingabetabellenpartitionsspalte, anhand derer der Partitionsschritt festgelegt wird.
- PARTITIONS:Die maximale Anzahl von Partitionen, die für die Parallelität von Tabellenlese- und ‑schreibvorgängen verwendet werden kann.
Wenn angegeben, wird dieser Wert für die JDBC-Eingabe- und ‑Ausgabeverbindung verwendet. Standardeinstellung:
10
FETCHSIZE : Optional. Anzahl der Zeilen, die pro Aufruf abgerufen werden sollen. Der Standardwert ist 10.TEMPVIEW undSQL_QUERY : Optional. Mit diesen beiden optionalen Parametern können Sie beim Laden von Daten in BigQuery eine Spark SQL-Transformation anwenden. TEMPVIEW ist der Name der temporären Ansicht und SQL_QUERY ist die Abfrageanweisung. TEMPVIEW und der Tabellenname in SQL_QUERY müssen übereinstimmen.SERVICE_ACCOUNT : Optional. Wenn nicht angegeben, wird das Compute Engine-Standarddienstkonto verwendet.PROPERTY undPROPERTY_VALUE : Optional. Durch Kommas getrennte Liste von Spark-Property=value
-Paaren.LABEL undLABEL_VALUE : Optional. Durch Kommas getrennte Liste vonlabel
=value
-Paaren.LOG_LEVEL : Optional. Protokollierungsebene. KannALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
oderWARN
sein. Standard:INFO
.-
KMS_KEY : Optional. Der Cloud Key Management Service-Schlüssel, der für die Verschlüsselung verwendet werden soll. Wenn kein Schlüssel angegeben ist, werden die Daten inaktiv verschlüsselt. Dazu wird ein Google-owned and Google-managed encryption keyverwendet.Beispiel:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
Führen Sie folgenden Befehl aus:
Linux, macOS oder Cloud Shell
gcloud dataproc batches submit spark \ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \ --version="1.2" \ --project="PROJECT_ID " \ --region="REGION " \ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH " \ --subnet="SUBNET " \ --kms-key="KMS_KEY " \ --service-account="SERVICE_ACCOUNT " \ --properties="PROPERTY =PROPERTY_VALUE " \ --labels="LABEL =LABEL_VALUE " \ -- --template=JDBCTOBIGQUERY \ --templateProperty log.level="LOG_LEVEL " \ --templateProperty jdbctobq.bigquery.location="DATASET .TABLE " \ --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL " \ --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER " \ --templateProperty jdbctobq.write.mode="MODE " \ --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET " \ --templateProperty jdbctobq.sql="QUERY " \ --templateProperty jdbctobq.sql.numPartitions="PARTITIONS " \ --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN " \ --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND " \ --templateProperty jdbctobq.sql.upperBound="UPPERBOUND " \ --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE " \ --templateProperty jdbctobq.temp.table="TEMPVIEW " \ --templateProperty jdbctobq.temp.query="SQL_QUERY "
Windows (PowerShell)
gcloud dataproc batches submit spark ` --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ` --version="1.2" ` --project="PROJECT_ID " ` --region="REGION " ` --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH " ` --subnet="SUBNET " ` --kms-key="KMS_KEY " ` --service-account="SERVICE_ACCOUNT " ` --properties="PROPERTY =PROPERTY_VALUE " ` --labels="LABEL =LABEL_VALUE " ` -- --template=JDBCTOBIGQUERY ` --templateProperty log.level="LOG_LEVEL " ` --templateProperty jdbctobq.bigquery.location="DATASET .TABLE " ` --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL " ` --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER " ` --templateProperty jdbctobq.write.mode="MODE " ` --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET " ` --templateProperty jdbctobq.sql="QUERY " ` --templateProperty jdbctobq.sql.numPartitions="PARTITIONS " ` --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN " ` --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND " ` --templateProperty jdbctobq.sql.upperBound="UPPERBOUND " ` --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE " ` --templateProperty jdbctobq.temp.table="TEMPVIEW " ` --templateProperty jdbctobq.temp.query="SQL_QUERY "
Windows (cmd.exe)
gcloud dataproc batches submit spark ^ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^ --version="1.2" ^ --project="PROJECT_ID " ^ --region="REGION " ^ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH " ^ --subnet="SUBNET " ^ --kms-key="KMS_KEY " ^ --service-account="SERVICE_ACCOUNT " ^ --properties="PROPERTY =PROPERTY_VALUE " ^ --labels="LABEL =LABEL_VALUE " ^ -- --template=JDBCTOBIGQUERY ^ --templateProperty log.level="LOG_LEVEL " ^ --templateProperty jdbctobq.bigquery.location="DATASET .TABLE " ^ --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL " ^ --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER " ^ --templateProperty jdbctobq.write.mode="MODE " ^ --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET " ^ --templateProperty jdbctobq.sql="QUERY " ^ --templateProperty jdbctobq.sql.numPartitions="PARTITIONS " ^ --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN " ^ --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND " ^ --templateProperty jdbctobq.sql.upperBound="UPPERBOUND " ^ --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE " ^ --templateProperty jdbctobq.temp.table="TEMPVIEW " ^ --templateProperty jdbctobq.temp.query="SQL_QUERY "
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
PROJECT_ID : erforderlich. Ihre Google Cloud Projekt-ID, die in den IAM-Einstellungen aufgeführt ist.REGION : erforderlich. Compute Engine-RegionTEMPLATE_VERSION : erforderlich. Geben Sielatest
für die neueste Vorlagenversion oder das Datum einer bestimmten Version an, z. B.2023-03-17_v0.1.0-beta
. Rufen Sie gs://dataproc-templates-binaries auf oder führen Siegcloud storage ls gs://dataproc-templates-binaries
aus, um eine Liste der verfügbaren Vorlagenversionen aufzurufen.SUBNET : Optional. Wenn kein Subnetz angegeben ist, wird das Subnetz in der angegebenen REGION imdefault
-Netzwerk ausgewählt.Beispiel:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
JDBC_CONNECTOR_CLOUD_STORAGE_PATH : erforderlich. Der vollständige Cloud Storage-Pfad, einschließlich des Dateinamens, unter dem die JAR-Datei des JDBC-Connectors gespeichert ist. Mit den folgenden Befehlen können Sie JDBC-Connectors zum Hochladen in Cloud Storage herunterladen:- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- Postgres SQL:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- Microsoft SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
DATASET undTABLE : Erforderlich. BigQuery-Ziel-Dataset und ‑Tabelle- Die folgenden Variablen werden verwendet, um die erforderliche
JDBC_CONNECTION_URL zu erstellen:JDBC_HOST JDBC_PORT JDBC_DATABASE oder, für Oracle,JDBC_SERVICE JDBC_USERNAME JDBC_PASSWORD
Erstellen Sie die JDBC_CONNECTION_URL in einem der folgenden connectorspezifischen Formate:
- MySQL:
jdbc:mysql://
JDBC_HOST :JDBC_PORT /JDBC_DATABASE ?user=JDBC_USERNAME &password=JDBC_PASSWORD - Postgres SQL:
jdbc:postgresql://
JDBC_HOST :JDBC_PORT /JDBC_DATABASE ?user=JDBC_USERNAME &password=JDBC_PASSWORD - Microsoft SQL Server:
jdbc:sqlserver://
JDBC_HOST :JDBC_PORT ;databaseName=JDBC_DATABASE ;user=JDBC_USERNAME ;password=JDBC_PASSWORD - Oracle:
jdbc:oracle:thin:@//
JDBC_HOST :JDBC_PORT /JDBC_SERVICE ?user=JDBC_USERNAME &password=JDBC_PASSWORD
DRIVER : erforderlich. Der JDBC-Treiber, der für die Verbindung verwendet wird:- MySQL:
com.mysql.cj.jdbc.Driver
- Postgres SQL:
org.postgresql.Driver
- Microsoft SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
QUERY : erforderlich. SQL-Abfrage zum Extrahieren von Daten aus JDBC.MODE : erforderlich. Schreibmodus für BigQuery-Ausgabe. Optionen:append
,overwrite
,ignore
odererrorifexists
.TEMP_BUCKET : erforderlich. Name des Cloud Storage-Buckets. Dieser Bucket wird für das Laden in BigQuery verwendet.Beispiel:
gs://dataproc-templates/jdbc_to_cloud_storage_output
INPUT_PARTITION_COLUMN ,LOWERBOUND ,UPPERBOUND ,PARTITIONS : Optional. Bei Verwendung müssen alle folgenden Parameter angegeben werden:- INPUT_PARTITION_COLUMN: Name der Partitionsspalte der JDBC-Eingabetabelle.
- LOWERBOUND: Untergrenze der JDBC-Eingabetabellenpartitionsspalte, die zum Bestimmen des Partitionsschritts verwendet wird.
- UPPERBOUND:Obergrenze der JDBC-Eingabetabellenpartitionsspalte, anhand derer der Partitionsschritt festgelegt wird.
- PARTITIONS:Die maximale Anzahl von Partitionen, die für die Parallelität von Tabellenlese- und ‑schreibvorgängen verwendet werden kann.
Wenn angegeben, wird dieser Wert für die JDBC-Eingabe- und ‑Ausgabeverbindung verwendet. Standardeinstellung:
10
FETCHSIZE : Optional. Anzahl der Zeilen, die pro Aufruf abgerufen werden sollen. Der Standardwert ist 10.TEMPVIEW undSQL_QUERY : Optional. Mit diesen beiden optionalen Parametern können Sie beim Laden von Daten in BigQuery eine Spark SQL-Transformation anwenden. TEMPVIEW ist der Name der temporären Ansicht und SQL_QUERY ist die Abfrageanweisung. TEMPVIEW und der Tabellenname in SQL_QUERY müssen übereinstimmen.SERVICE_ACCOUNT : Optional. Wenn nicht angegeben, wird das Compute Engine-Standarddienstkonto verwendet.PROPERTY undPROPERTY_VALUE : Optional. Durch Kommas getrennte Liste von Spark-Property=value
-Paaren.LABEL undLABEL_VALUE : Optional. Durch Kommas getrennte Liste vonlabel
=value
-Paaren.LOG_LEVEL : Optional. Protokollierungsebene. KannALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
oderWARN
sein. Standard:INFO
.-
KMS_KEY : Optional. Der Cloud Key Management Service-Schlüssel, der für die Verschlüsselung verwendet werden soll. Wenn kein Schlüssel angegeben ist, werden die Daten inaktiv verschlüsselt. Dazu wird ein Google-owned and Google-managed encryption keyverwendet.Beispiel:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
HTTP-Methode und URL:
POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID /locations/REGION /batches
JSON-Text anfordern:
{ "environmentConfig": { "executionConfig": { "subnetworkUri": "SUBNET ", "kmsKey": "KMS_KEY ", "serviceAccount": "SERVICE_ACCOUNT " } }, "labels": { "LABEL ": "LABEL_VALUE " }, "runtimeConfig": { "version": "1.2", "properties": { "PROPERTY ": "PROPERTY_VALUE " } }, "sparkBatch": { "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate", "args": [ "--template","JDBCTOBIGQUERY", "--templateProperty","log.level=LOG_LEVEL ", "--templateProperty","jdbctobq.bigquery.location=DATASET .TABLE ", "--templateProperty","jdbctobq.jdbc.url=JDBC_CONNECTION_URL ", "--templateProperty","jdbctobq.jdbc.driver.class.name=DRIVER ", "--templateProperty","jdbctobq.sql=QUERY ", "--templateProperty","jdbctobq.write.mode=MODE ", "--templateProperty","jdbctobq.temp.gcs.bucket=TEMP_BUCKET ", "--templateProperty","jdbctobq.sql.partitionColumn=INPUT_PARTITION_COLUMN ", "--templateProperty","jdbctobq.sql.lowerBound=LOWERBOUND ", "--templateProperty","jdbctobq.sql.upperBound=UPPERBOUND ", "--templateProperty","jdbctobq.sql.numPartitions=PARTITIONS ", "--templateProperty","jdbctobq.jdbc.fetchsize=FETCHSIZE " ], "jarFileUris": [ "gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar","gs://JDBC_CONNECTOR_GCS_PATH " ] } }
Wenn Sie die Anfrage senden möchten, maximieren Sie eine der folgenden Optionen:
curl (Linux, macOS oder Cloud Shell)
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://dataproc.googleapis.com/v1/projects/PROJECT_ID /locations/REGION /batches"
PowerShell (Windows)
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://dataproc.googleapis.com/v1/projects/PROJECT_ID /locations/REGION /batches" | Select-Object -Expand Content
Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:
{ "name": "projects/PROJECT_ID /regions/REGION /operations/OPERATION_ID ", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID /locations/REGION /batches/BATCH_ID ", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }