Hive to BigQuery テンプレート
Dataproc Serverless Hive to BigQuery テンプレートを使用して、Hive から BigQuery にデータを抽出します。
テンプレートの使用
gcloud CLI または Dataproc API を使用してテンプレートを実行します。
後述のコマンドデータを使用する前に、次のように置き換えます。
PROJECT_ID : 必須。IAM 設定に載っている Google Cloud プロジェクト ID。REGION : 必須。Compute Engine のリージョン。TEMPLATE_VERSION : 必須。最新のテンプレート バージョンまたは特定バージョンの日付(2023-03-17_v0.1.0-beta
など)にはlatest
を指定します(gs://dataproc-templates-binaries にアクセスするか、gcloud storage ls gs://dataproc-templates-binaries
を実行して、使用可能なテンプレート バージョンを一覧表示します)。SUBNET : 省略可。サブネットが指定されていない場合、default
ネットワークの指定された REGION のサブネットが選択されます。例:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
HOST 、PORT : 必須。ソースの Hive データベース ホストのホスト名または IP アドレスとポート。例:
10.0.0.33:9083
DATASET : 必須。BigQuery 出力のデータセット名。TABLE : 必須。BigQuery 出力のテーブル名。QUERY : 必須。Hive からデータを抽出するためのクエリ。TEMP_BUCKET : 必須。Cloud Storage バケット名(バケットの名前のみを指定)。このバケットは BigQuery の読み込みに使用されます。MODE : 必須。BigQuery 出力の書き込みモード。オプション:Append
、Overwrite
、Ignore
、ErrorIfExists
。TEMPVIEW 、TEMPVIEW_SQL_QUERY : 省略可。 これら 2 つのオプションのパラメータを使用して、BigQuery にデータを読み込むときに Spark SQL 変換を適用できます。 TEMPVIEW は一時的なビュー名で、TEMPVIEW_SQL_QUERY はクエリ ステートメントです。TEMPVIEW と TEMPVIEW_SQL_QUERY 内のテーブル名は一致する必要があります。SERVICE_ACCOUNT : 省略可。指定されていない場合は、デフォルトの Compute Engine サービス アカウントが使用されます。PROPERTY 、PROPERTY_VALUE : 省略可。Spark プロパティ=value
ペアのカンマ区切りのリスト。LABEL 、LABEL_VALUE : 省略可。label
=value
ペアのカンマ区切りのリスト。LOG_LEVEL : 省略可。ロギングのレベル。ALL
、DEBUG
、ERROR
、FATAL
、INFO
、OFF
、TRACE
、WARN
のいずれかです。デフォルト:INFO
-
KMS_KEY : 省略可。暗号化に使用する Cloud Key Management Service。鍵が指定されていない場合、データは Google が所有し、Google が管理する鍵を使用して、保存時に暗号化されます。例:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
次のコマンドを実行します。
Linux、macOS、Cloud Shell
gcloud dataproc batches submit spark \ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \ --version="1.2" \ --project="PROJECT_ID " \ --region="REGION " \ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar" \ --subnet="SUBNET " \ --service-account="SERVICE_ACCOUNT " \ --properties="spark.hadoop.hive.metastore.uris=thrift://HOST :PORT ,PROPERTY =PROPERTY_VALUE " \ --kms-key="KMS_KEY " \ --labels="LABEL =LABEL_VALUE " \ -- --template HIVETOBIGQUERY \ --templateProperty log.level="LOG_LEVEL " \ --templateProperty hivetobq.bigquery.location="PROJECT_ID .DATASET .TABLE " \ --templateProperty hivetobq.sql="QUERY " \ --templateProperty hivetobq.temp.gcs.bucket="TEMP_BUCKET " \ --templateProperty hivetobq.write.mode="MODE " \ --templateProperty hivetobq.temp.table="TEMPVIEW " \ --templateProperty hivetobq.temp.query="TEMPVIEW_SQL_QUERY "
Windows(PowerShell)
gcloud dataproc batches submit spark ` --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ` --version="1.2" ` --project="PROJECT_ID " ` --region="REGION " ` --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar" ` --subnet="SUBNET " ` --service-account="SERVICE_ACCOUNT " ` --properties="spark.hadoop.hive.metastore.uris=thrift://HOST :PORT ,PROPERTY =PROPERTY_VALUE " ` --kms-key="KMS_KEY " ` --labels="LABEL =LABEL_VALUE " ` -- --template HIVETOBIGQUERY ` --templateProperty log.level="LOG_LEVEL " ` --templateProperty hivetobq.bigquery.location="PROJECT_ID .DATASET .TABLE " ` --templateProperty hivetobq.sql="QUERY " ` --templateProperty hivetobq.temp.gcs.bucket="TEMP_BUCKET " ` --templateProperty hivetobq.write.mode="MODE " ` --templateProperty hivetobq.temp.table="TEMPVIEW " ` --templateProperty hivetobq.temp.query="TEMPVIEW_SQL_QUERY "
Windows(cmd.exe)
gcloud dataproc batches submit spark ^ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^ --version="1.2" ^ --project="PROJECT_ID " ^ --region="REGION " ^ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar" ^ --subnet="SUBNET " ^ --service-account="SERVICE_ACCOUNT " ^ --properties="spark.hadoop.hive.metastore.uris=thrift://HOST :PORT ,PROPERTY =PROPERTY_VALUE " ^ --kms-key="KMS_KEY " ^ --labels="LABEL =LABEL_VALUE " ^ -- --template HIVETOBIGQUERY ^ --templateProperty log.level="LOG_LEVEL " ^ --templateProperty hivetobq.bigquery.location="PROJECT_ID .DATASET .TABLE " ^ --templateProperty hivetobq.sql="QUERY " ^ --templateProperty hivetobq.temp.gcs.bucket="TEMP_BUCKET " ^ --templateProperty hivetobq.write.mode="MODE " ^ --templateProperty hivetobq.temp.table="TEMPVIEW " ^ --templateProperty hivetobq.temp.query="TEMPVIEW_SQL_QUERY "
リクエストのデータを使用する前に、次のように置き換えます。
PROJECT_ID : 必須。IAM 設定に載っている Google Cloud プロジェクト ID。REGION : 必須。Compute Engine のリージョン。TEMPLATE_VERSION : 必須。最新のテンプレート バージョンまたは特定バージョンの日付(2023-03-17_v0.1.0-beta
など)にはlatest
を指定します(gs://dataproc-templates-binaries にアクセスするか、gcloud storage ls gs://dataproc-templates-binaries
を実行して、使用可能なテンプレート バージョンを一覧表示します)。SUBNET : 省略可。サブネットが指定されていない場合、default
ネットワークの指定された REGION のサブネットが選択されます。例:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
HOST 、PORT : 必須。ソースの Hive データベース ホストのホスト名または IP アドレスとポート。例:
10.0.0.33:9083
DATASET : 必須。BigQuery 出力のデータセット名。TABLE : 必須。BigQuery 出力のテーブル名。QUERY : 必須。Hive からデータを抽出するためのクエリ。TEMP_BUCKET : 必須。Cloud Storage バケット名(バケットの名前のみを指定)。このバケットは BigQuery の読み込みに使用されます。MODE : 必須。BigQuery 出力の書き込みモード。オプション:Append
、Overwrite
、Ignore
、ErrorIfExists
。TEMPVIEW 、TEMPVIEW_SQL_QUERY : 省略可。 これら 2 つのオプションのパラメータを使用して、BigQuery にデータを読み込むときに Spark SQL 変換を適用できます。 TEMPVIEW は一時的なビュー名で、TEMPVIEW_SQL_QUERY はクエリ ステートメントです。TEMPVIEW と TEMPVIEW_SQL_QUERY 内のテーブル名は一致する必要があります。SERVICE_ACCOUNT : 省略可。指定されていない場合は、デフォルトの Compute Engine サービス アカウントが使用されます。PROPERTY 、PROPERTY_VALUE : 省略可。Spark プロパティ=value
ペアのカンマ区切りのリスト。LABEL 、LABEL_VALUE : 省略可。label
=value
ペアのカンマ区切りのリスト。LOG_LEVEL : 省略可。ロギングのレベル。ALL
、DEBUG
、ERROR
、FATAL
、INFO
、OFF
、TRACE
、WARN
のいずれかです。デフォルト:INFO
-
KMS_KEY : 省略可。暗号化に使用する Cloud Key Management Service。鍵が指定されていない場合、データは Google が所有し、Google が管理する鍵を使用して、保存時に暗号化されます。例:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
HTTP メソッドと URL:
POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID /locations/REGION /batches
リクエストの本文(JSON):
{ "environmentConfig":{ "executionConfig":{ "subnetworkUri":"SUBNET ", "kmsKey": "KMS_KEY ", "serviceAccount": "SERVICE_ACCOUNT " } }, "labels": { "LABEL ": "LABEL_VALUE " }, "runtimeConfig": { "version": "1.2", "properties": { "spark.hadoop.hive.metastore.uris":"thrift://HOST :PORT ", "PROPERTY ": "PROPERTY_VALUE " } }, "sparkBatch":{ "mainClass":"com.google.cloud.dataproc.templates.main.DataProcTemplate", "args":[ "--template","HIVETOBIGQUERY", "--templateProperty","log.level=LOG_LEVEL ", "--templateProperty","hivetobq.bigquery.location=PROJECT_ID .DATASET .TABLE ", "--templateProperty","hivetobq.sql=QUERY ", "--templateProperty","hivetobq.temp.gcs.bucket=TEMP_BUCKET ", "--templateProperty","hivetobq.write.mode=MODE ", "--templateProperty","hivetobq.temp.table=TEMPVIEW ", "--templateProperty","hivetobq.temp.query=TEMPVIEW_SQL_QUERY " ], "jarFileUris":[ "gs://dataproc-templates-binaries/TEMPLATE_VERSION /java/dataproc-templates.jar" ] } }
リクエストを送信するには、次のいずれかのオプションを展開します。
curl(Linux、macOS、Cloud Shell)
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://dataproc.googleapis.com/v1/projects/PROJECT_ID /locations/REGION /batches"
PowerShell(Windows)
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://dataproc.googleapis.com/v1/projects/PROJECT_ID /locations/REGION /batches" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID /regions/REGION /operations/OPERATION_ID ", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID /locations/REGION /batches/BATCH_ID ", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }