Lettura CDC da Apache Iceberg con il catalogo REST BigLake

Per leggere gli eventi Change Data Capture (CDC) da Apache Iceberg utilizzando il catalogo BigLake REST, utilizza il connettore I/O gestito di Apache Beam.

L'I/O gestito supporta le seguenti funzionalità per Apache Iceberg:

Cataloghi
  • Hadoop
  • Hive
  • Cataloghi basati su REST
  • Metastore BigQuery (richiede Apache Beam SDK 2.62.0 o versioni successive se non utilizzi Runner v2)
Funzionalità di lettura Lettura batch
Capacità di scrittura

Per le tabelle BigQuery per Apache Iceberg, utilizza il connettore BigQueryIO con l'API BigQuery Storage. La tabella deve già esistere; la creazione dinamica della tabella non è supportata.

Limitazioni

  1. Apache Iceberg CDC è supportato solo utilizzando l'API gestita. Le funzionalità del servizio di trasformazioni gestite non sono ancora abilitate. Prevedi modifiche che influiscono sulla compatibilità con le versioni precedenti
  2. L'API CDC Managed legge solo gli snapshot di sola aggiunta. Il CDC completo non è ancora disponibile.

Prerequisiti

  1. Configura BigLake. Configura il tuo progetto Google Cloud Platform con le autorizzazioni richieste seguendo le istruzioni riportate in Utilizzare BigLake Metastore con il catalogo REST Iceberg. Assicurati di aver compreso le limitazioni del catalogo REST BigLake Iceberg descritte in quella pagina.
  2. Crea una tabella Iceberg di origine. L'esempio mostrato qui presuppone che tu abbia una tabella Apache Iceberg. Per crearne uno, puoi utilizzare la pipeline mostrata in Scrittura in streaming in Apache Iceberg con il catalogo BigLake REST.

Dipendenze

Aggiungi le seguenti dipendenze al tuo progetto:

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.iceberg</groupId>
  <artifactId>iceberg-gcp</artifactId>
  <version>${iceberg.version}</version>
</dependency>

Esempio

Il seguente esempio mostra una pipeline di streaming che legge gli eventi CDC da una tabella Apache Iceberg, aggrega i clic degli utenti e scrive i risultati in un'altra tabella Apache Iceberg.

Java

Per eseguire l'autenticazione in Dataflow, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

import com.google.auth.oauth2.GoogleCredentials;
import com.google.common.collect.ImmutableMap;
import java.io.IOException;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.coders.RowCoder;
import org.apache.beam.sdk.extensions.gcp.options.GcpOptions;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation;
import org.apache.beam.sdk.schemas.Schema;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.Sum;
import org.apache.beam.sdk.transforms.windowing.FixedWindows;
import org.apache.beam.sdk.transforms.windowing.Window;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.Row;
import org.apache.beam.sdk.values.TypeDescriptors;
import org.joda.time.Duration;

/**
 * A streaming pipeline that reads CDC events from an Iceberg table, aggregates user clicks, and
 * writes the results to another Iceberg table. For more information on BigLake, 
 * see the documentation at https://cloud.google.com/bigquery/docs/blms-rest-catalog.
 *
 * <p>This pipeline can be used to process the output of {@link
 * ApacheIcebergRestCatalogStreamingWrite}.
 */
public class ApacheIcebergCdcRead {

  // Schema for the source table containing click events.
  public static final Schema SOURCE_SCHEMA =
      Schema.builder().addStringField("user_id").addInt64Field("click_count").build();

  // Schema for the destination table containing aggregated click counts.
  public static final Schema DESTINATION_SCHEMA =
      Schema.builder().addStringField("user_id").addInt64Field("total_clicks").build();

  /** Pipeline options for this example. */
  public interface Options extends GcpOptions {
    @Description("The source Iceberg table to read CDC events from")
    @Validation.Required
    String getSourceTable();

    void setSourceTable(String sourceTable);

    @Description("The destination Iceberg table to write aggregated results to")
    @Validation.Required
    String getDestinationTable();

    void setDestinationTable(String destinationTable);

    @Description("Warehouse location for the Iceberg catalog")
    @Validation.Required
    String getWarehouse();

    void setWarehouse(String warehouse);

    @Description("The URI for the REST catalog")
    @Default.String("https://biglake.googleapis.com/iceberg/v1beta/restcatalog")
    String getCatalogUri();

    void setCatalogUri(String value);

    @Description("The name of the Iceberg catalog")
    @Validation.Required
    String getCatalogName();

    void setCatalogName(String catalogName);
  }

  public static void main(String[] args) throws IOException {
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);

    // Note: The token expires in 1 hour. Users may need to re-run the pipeline.
    // Future updates to Iceberg and the BigLake Metastore will support token refreshing.
    Map<String, String> catalogProps =
        ImmutableMap.<String, String>builder()
            .put("type", "rest")
            .put("uri", options.getCatalogUri())
            .put("warehouse", options.getWarehouse())
            .put("header.x-goog-user-project", options.getProject())
            .put(
                "header.Authorization",
                "Bearer "
                    + GoogleCredentials.getApplicationDefault()
                        .createScoped("https://www.googleapis.com/auth/cloud-platform")
                        .refreshAccessToken()
                        .getTokenValue())
            .put("rest-metrics-reporting-enabled", "false")
            .build();

    Pipeline p = Pipeline.create(options);

    // Configure the Iceberg CDC read
    Map<String, Object> icebergReadConfig =
        ImmutableMap.<String, Object>builder()
            .put("table", options.getSourceTable())
            .put("catalog_name", options.getCatalogName())
            .put("catalog_properties", catalogProps)
            .put("streaming", Boolean.TRUE)
            .put("poll_interval_seconds", 20)
            .build();

    PCollection<Row> cdcEvents =
        p.apply("ReadFromIceberg", Managed.read(Managed.ICEBERG_CDC).withConfig(icebergReadConfig))
            .getSinglePCollection()
            .setRowSchema(SOURCE_SCHEMA);

    PCollection<Row> aggregatedRows =
        cdcEvents
            .apply("ApplyWindow", Window.into(FixedWindows.of(Duration.standardSeconds(30))))
            .apply(
                "ExtractUserAndCount",
                MapElements.into(
                        TypeDescriptors.kvs(TypeDescriptors.strings(), TypeDescriptors.longs()))
                    .via(
                        row -> {
                          String userId = row.getString("user_id");
                          Long clickCount = row.getInt64("click_count");
                          return KV.of(userId, clickCount == null ? 0L : clickCount);
                        }))
            .apply("SumClicksPerUser", Sum.longsPerKey())
            .apply(
                "FormatToRow",
                MapElements.into(TypeDescriptors.rows())
                    .via(
                        kv ->
                            Row.withSchema(DESTINATION_SCHEMA)
                                .withFieldValue("user_id", kv.getKey())
                                .withFieldValue("total_clicks", kv.getValue())
                                .build()))
            .setCoder(RowCoder.of(DESTINATION_SCHEMA));

    // Configure the Iceberg write
    Map<String, Object> icebergWriteConfig =
        ImmutableMap.<String, Object>builder()
            .put("table", options.getDestinationTable())
            .put("catalog_properties", catalogProps)
            .put("catalog_name", options.getCatalogName())
            .put("triggering_frequency_seconds", 30)
            .build();

    aggregatedRows.apply(
        "WriteToIceberg", Managed.write(Managed.ICEBERG).withConfig(icebergWriteConfig));

    p.run();
  }
}

Passaggi successivi