En este ejemplo, se muestra cómo usar un búfer de protocolo para escribir datos en una tabla de BigQuery.
Muestra de código
Node.js
Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Node.js.
Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.
const {adapt, managedwriter} = require('@google-cloud/bigquery-storage');
const {WriterClient, Writer} = managedwriter;
const sample_data_pb = require('./sample_data_pb.js');
const {SampleData} = sample_data_pb;
const protobufjs = require('protobufjs');
require('protobufjs/ext/descriptor');
async function appendRowsProto2() {
/**
* If you make updates to the sample_data.proto protocol buffers definition,
* run:
* pbjs sample_data.proto -t static-module -w commonjs -o sample_data.js
* pbjs sample_data.proto -t json --keep-case -o sample_data.json
* from the /samples directory to generate the sample_data module.
*/
// So that BigQuery knows how to parse the serialized_rows, create a
// protocol buffer representation of your message descriptor.
const root = protobufjs.loadSync('./sample_data.json');
const descriptor = root.lookupType('SampleData').toDescriptor('proto2');
const protoDescriptor = adapt.normalizeDescriptor(descriptor).toJSON();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// projectId = 'my_project';
// datasetId = 'my_dataset';
// tableId = 'my_table';
const destinationTable = `projects/${projectId}/datasets/${datasetId}/tables/${tableId}`;
const streamType = managedwriter.PendingStream;
const writeClient = new WriterClient({projectId});
try {
const streamId = await writeClient.createWriteStream({
streamType,
destinationTable,
});
console.log(`Stream created: ${streamId}`);
const connection = await writeClient.createStreamConnection({
streamId,
});
const writer = new Writer({
connection,
protoDescriptor,
});
let serializedRows = [];
const pendingWrites = [];
// Row 1
let row = {
rowNum: 1,
boolCol: true,
bytesCol: Buffer.from('hello world'),
float64Col: parseFloat('+123.45'),
int64Col: 123,
stringCol: 'omg',
};
serializedRows.push(SampleData.encode(row).finish());
// Row 2
row = {
rowNum: 2,
boolCol: false,
};
serializedRows.push(SampleData.encode(row).finish());
// Row 3
row = {
rowNum: 3,
bytesCol: Buffer.from('later, gator'),
};
serializedRows.push(SampleData.encode(row).finish());
// Row 4
row = {
rowNum: 4,
float64Col: 987.654,
};
serializedRows.push(SampleData.encode(row).finish());
// Row 5
row = {
rowNum: 5,
int64Col: 321,
};
serializedRows.push(SampleData.encode(row).finish());
// Row 6
row = {
rowNum: 6,
stringCol: 'octavia',
};
serializedRows.push(SampleData.encode(row).finish());
// Set an offset to allow resuming this stream if the connection breaks.
// Keep track of which requests the server has acknowledged and resume the
// stream at the first non-acknowledged message. If the server has already
// processed a message with that offset, it will return an ALREADY_EXISTS
// error, which can be safely ignored.
// The first request must always have an offset of 0.
let offsetValue = 0;
// Send batch.
let pw = writer.appendRows({serializedRows}, offsetValue);
pendingWrites.push(pw);
// Reset rows.
serializedRows = [];
// Row 7
const days = new Date('2019-02-07').getTime() / (1000 * 60 * 60 * 24);
row = {
rowNum: 7,
dateCol: days, // The value is the number of days since the Unix epoch (1970-01-01)
};
serializedRows.push(SampleData.encode(row).finish());
// Row 8
row = {
rowNum: 8,
datetimeCol: '2019-02-17 11:24:00.000',
};
serializedRows.push(SampleData.encode(row).finish());
// Row 9
row = {
rowNum: 9,
geographyCol: 'POINT(5 5)',
};
serializedRows.push(SampleData.encode(row).finish());
// Row 10
row = {
rowNum: 10,
numericCol: '123456',
bignumericCol: '99999999999999999999999999999.999999999',
};
serializedRows.push(SampleData.encode(row).finish());
// Row 11
row = {
rowNum: 11,
timeCol: '18:00:00',
};
serializedRows.push(SampleData.encode(row).finish());
// Row 12
const timestamp = new Date('2022-01-09T03:49:46.564Z').getTime();
row = {
rowNum: 12,
timestampCol: timestamp * 1000, // The value is given in microseconds since the Unix epoch (1970-01-01)
};
serializedRows.push(SampleData.encode(row).finish());
// Offset must equal the number of rows that were previously sent.
offsetValue = 6;
// Send batch.
pw = writer.appendRows({serializedRows}, offsetValue);
pendingWrites.push(pw);
serializedRows = [];
// Row 13
row = {
rowNum: 13,
int64List: [1999, 2001],
};
serializedRows.push(SampleData.encode(row).finish());
// Row 14
row = {
rowNum: 14,
structCol: {
subIntCol: 99,
},
};
serializedRows.push(SampleData.encode(row).finish());
// Row 15
row = {
rowNum: 15,
structList: [{subIntCol: 100}, {subIntCol: 101}],
};
serializedRows.push(SampleData.encode(row).finish());
// Row 16
const timestampStart = new Date('2022-01-09T03:49:46.564Z').getTime();
const timestampEnd = new Date('2022-01-09T04:49:46.564Z').getTime();
row = {
rowNum: 16,
rangeCol: {
start: timestampStart * 1000,
end: timestampEnd * 1000,
},
};
serializedRows.push(SampleData.encode(row).finish());
offsetValue = 12;
// Send batch.
pw = writer.appendRows({serializedRows}, offsetValue);
pendingWrites.push(pw);
const results = await Promise.all(
pendingWrites.map(pw => pw.getResult())
);
console.log('Write results:', results);
const {rowCount} = await connection.finalize();
console.log(`Row count: ${rowCount}`);
const response = await writeClient.batchCommitWriteStream({
parent: destinationTable,
writeStreams: [streamId],
});
console.log(response);
} catch (err) {
console.log(err);
} finally {
writeClient.close();
}
}
Python
Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Python.
Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.
"""
This code sample demonstrates using the low-level generated client for Python.
"""
import datetime
import decimal
from google.protobuf import descriptor_pb2
from google.cloud import bigquery_storage_v1
from google.cloud.bigquery_storage_v1 import types, writer
# If you make updates to the sample_data.proto protocol buffers definition,
# run:
#
# protoc --python_out=. sample_data.proto
#
# from the samples/snippets directory to generate the sample_data_pb2 module.
from . import sample_data_pb2
def append_rows_proto2(project_id: str, dataset_id: str, table_id: str):
"""Create a write stream, write some sample data, and commit the stream."""
write_client = bigquery_storage_v1.BigQueryWriteClient()
parent = write_client.table_path(project_id, dataset_id, table_id)
write_stream = types.WriteStream()
# When creating the stream, choose the type. Use the PENDING type to wait
# until the stream is committed before it is visible. See:
# https://cloud.google.com/bigquery/docs/reference/storage/rpc/google.cloud.bigquery.storage.v1#google.cloud.bigquery.storage.v1.WriteStream.Type
write_stream.type_ = types.WriteStream.Type.PENDING
write_stream = write_client.create_write_stream(
parent=parent, write_stream=write_stream
)
stream_name = write_stream.name
# Create a template with fields needed for the first request.
request_template = types.AppendRowsRequest()
# The initial request must contain the stream name.
request_template.write_stream = stream_name
# So that BigQuery knows how to parse the serialized_rows, generate a
# protocol buffer representation of your message descriptor.
proto_schema = types.ProtoSchema()
proto_descriptor = descriptor_pb2.DescriptorProto()
sample_data_pb2.SampleData.DESCRIPTOR.CopyToProto(proto_descriptor)
proto_schema.proto_descriptor = proto_descriptor
proto_data = types.AppendRowsRequest.ProtoData()
proto_data.writer_schema = proto_schema
request_template.proto_rows = proto_data
# Some stream types support an unbounded number of requests. Construct an
# AppendRowsStream to send an arbitrary number of requests to a stream.
append_rows_stream = writer.AppendRowsStream(write_client, request_template)
# Create a batch of row data by appending proto2 serialized bytes to the
# serialized_rows repeated field.
proto_rows = types.ProtoRows()
row = sample_data_pb2.SampleData()
row.row_num = 1
row.bool_col = True
row.bytes_col = b"Hello, World!"
row.float64_col = float("+inf")
row.int64_col = 123
row.string_col = "Howdy!"
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 2
row.bool_col = False
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 3
row.bytes_col = b"See you later!"
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 4
row.float64_col = 1000000.125
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 5
row.int64_col = 67000
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 6
row.string_col = "Auf Wiedersehen!"
proto_rows.serialized_rows.append(row.SerializeToString())
# Set an offset to allow resuming this stream if the connection breaks.
# Keep track of which requests the server has acknowledged and resume the
# stream at the first non-acknowledged message. If the server has already
# processed a message with that offset, it will return an ALREADY_EXISTS
# error, which can be safely ignored.
#
# The first request must always have an offset of 0.
request = types.AppendRowsRequest()
request.offset = 0
proto_data = types.AppendRowsRequest.ProtoData()
proto_data.rows = proto_rows
request.proto_rows = proto_data
response_future_1 = append_rows_stream.send(request)
# Create a batch of rows containing scalar values that don't directly
# correspond to a protocol buffers scalar type. See the documentation for
# the expected data formats:
# https://cloud.google.com/bigquery/docs/write-api#data_type_conversions
proto_rows = types.ProtoRows()
row = sample_data_pb2.SampleData()
row.row_num = 7
date_value = datetime.date(2021, 8, 12)
epoch_value = datetime.date(1970, 1, 1)
delta = date_value - epoch_value
row.date_col = delta.days
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 8
datetime_value = datetime.datetime(2021, 8, 12, 9, 46, 23, 987456)
row.datetime_col = datetime_value.strftime("%Y-%m-%d %H:%M:%S.%f")
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 9
row.geography_col = "POINT(-122.347222 47.651111)"
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 10
numeric_value = decimal.Decimal("1.23456789101112e+6")
row.numeric_col = str(numeric_value)
bignumeric_value = decimal.Decimal("-1.234567891011121314151617181920e+16")
row.bignumeric_col = str(bignumeric_value)
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 11
time_value = datetime.time(11, 7, 48, 123456)
row.time_col = time_value.strftime("%H:%M:%S.%f")
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 12
timestamp_value = datetime.datetime(
2021, 8, 12, 16, 11, 22, 987654, tzinfo=datetime.timezone.utc
)
epoch_value = datetime.datetime(1970, 1, 1, tzinfo=datetime.timezone.utc)
delta = timestamp_value - epoch_value
row.timestamp_col = int(delta.total_seconds()) * 1000000 + int(delta.microseconds)
proto_rows.serialized_rows.append(row.SerializeToString())
# Since this is the second request, you only need to include the row data.
# The name of the stream and protocol buffers DESCRIPTOR is only needed in
# the first request.
request = types.AppendRowsRequest()
proto_data = types.AppendRowsRequest.ProtoData()
proto_data.rows = proto_rows
request.proto_rows = proto_data
# Offset must equal the number of rows that were previously sent.
request.offset = 6
response_future_2 = append_rows_stream.send(request)
# Create a batch of rows with STRUCT and ARRAY BigQuery data types. In
# protocol buffers, these correspond to nested messages and repeated
# fields, respectively.
proto_rows = types.ProtoRows()
row = sample_data_pb2.SampleData()
row.row_num = 13
row.int64_list.append(1)
row.int64_list.append(2)
row.int64_list.append(3)
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 14
row.struct_col.sub_int_col = 7
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 15
sub_message = sample_data_pb2.SampleData.SampleStruct()
sub_message.sub_int_col = -1
row.struct_list.append(sub_message)
sub_message = sample_data_pb2.SampleData.SampleStruct()
sub_message.sub_int_col = -2
row.struct_list.append(sub_message)
sub_message = sample_data_pb2.SampleData.SampleStruct()
sub_message.sub_int_col = -3
row.struct_list.append(sub_message)
proto_rows.serialized_rows.append(row.SerializeToString())
row = sample_data_pb2.SampleData()
row.row_num = 16
date_value = datetime.date(2021, 8, 8)
epoch_value = datetime.date(1970, 1, 1)
delta = date_value - epoch_value
row.range_date.start = delta.days
proto_rows.serialized_rows.append(row.SerializeToString())
request = types.AppendRowsRequest()
request.offset = 12
proto_data = types.AppendRowsRequest.ProtoData()
proto_data.rows = proto_rows
request.proto_rows = proto_data
# For each request sent, a message is expected in the responses iterable.
# This sample sends 3 requests, therefore expect exactly 3 responses.
response_future_3 = append_rows_stream.send(request)
# All three requests are in-flight, wait for them to finish being processed
# before finalizing the stream.
print(response_future_1.result())
print(response_future_2.result())
print(response_future_3.result())
# Shutdown background threads and close the streaming connection.
append_rows_stream.close()
# A PENDING type stream must be "finalized" before being committed. No new
# records can be written to the stream after this method has been called.
write_client.finalize_write_stream(name=write_stream.name)
# Commit the stream you created earlier.
batch_commit_write_streams_request = types.BatchCommitWriteStreamsRequest()
batch_commit_write_streams_request.parent = parent
batch_commit_write_streams_request.write_streams = [write_stream.name]
write_client.batch_commit_write_streams(batch_commit_write_streams_request)
print(f"Writes to stream: '{write_stream.name}' have been committed.")
¿Qué sigue?
Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.