Actualiza la tabla con DML

Actualizar datos en una tabla de BigQuery mediante una consulta DML

Páginas de documentación que incluyen esta muestra de código

Para ver la muestra de código usada en contexto, consulta la siguiente documentación:

Muestra de código

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java que se encuentran en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobId;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableDataWriteChannel;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableResult;
import com.google.cloud.bigquery.WriteChannelConfiguration;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.channels.Channels;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.UUID;

// Sample to update data in BigQuery tables using DML query
public class UpdateTableDml {

  public static void main(String[] args) throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    updateTableDml(datasetName, tableName);
  }

  public static void updateTableDml(String datasetName, String tableName)
      throws IOException, InterruptedException {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Load JSON file into UserSessions table
      TableId tableId = TableId.of(datasetName, tableName);

      WriteChannelConfiguration writeChannelConfiguration =
          WriteChannelConfiguration.newBuilder(tableId)
              .setFormatOptions(FormatOptions.json())
              .build();

      // Imports a local JSON file into a table.
      Path jsonPath =
          FileSystems.getDefault().getPath("src/test/resources", "userSessionsData.json");

      // The location and JobName must be specified; other fields can be auto-detected.
      String jobName = "jobId_" + UUID.randomUUID().toString();
      JobId jobId = JobId.newBuilder().setLocation("us").setJob(jobName).build();

      try (TableDataWriteChannel writer = bigquery.writer(jobId, writeChannelConfiguration);
          OutputStream stream = Channels.newOutputStream(writer)) {
        Files.copy(jsonPath, stream);
      }

      // Get the Job created by the TableDataWriteChannel and wait for it to complete.
      Job job = bigquery.getJob(jobId);
      Job completedJob = job.waitFor();
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to load local file to the table due to an error: \n"
                + job.getStatus().getError());
        return;
      }

      System.out.println(
          job.getStatistics().toString() + " userSessionsData json uploaded successfully");

      // Write a DML query to modify UserSessions table
      // To create DML query job to mask the last octet in every row's ip_address column
      String dmlQuery =
          String.format(
              "UPDATE `%s.%s` \n"
                  + "SET ip_address = REGEXP_REPLACE(ip_address, r\"(\\.[0-9]+)$\", \".0\")\n"
                  + "WHERE TRUE",
              datasetName, tableName);

      QueryJobConfiguration dmlQueryConfig = QueryJobConfiguration.newBuilder(dmlQuery).build();

      // Execute the query.
      TableResult result = bigquery.query(dmlQueryConfig);

      // Print the results.
      result.iterateAll().forEach(rows -> rows.forEach(row -> System.out.println(row.getValue())));

      System.out.println("Table updated successfully using DML");
    } catch (BigQueryException e) {
      System.out.println("Table update failed \n" + e.toString());
    }
  }
}

Python

Antes de probar esta muestra, sigue las instrucciones de configuración para Python incluidas en la Guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Si deseas obtener más información, consulta la documentación de referencia de la API de Python de BigQuery.

import pathlib

from google.cloud import bigquery
from google.cloud.bigquery import enums

def load_from_newline_delimited_json(
    client: bigquery.Client,
    filepath: pathlib.Path,
    project_id: str,
    dataset_id: str,
    table_id: str,
):
    full_table_id = f"{project_id}.{dataset_id}.{table_id}"
    job_config = bigquery.LoadJobConfig()
    job_config.source_format = enums.SourceFormat.NEWLINE_DELIMITED_JSON
    job_config.schema = [
        bigquery.SchemaField("id", enums.SqlTypeNames.STRING),
        bigquery.SchemaField("user_id", enums.SqlTypeNames.INTEGER),
        bigquery.SchemaField("login_time", enums.SqlTypeNames.TIMESTAMP),
        bigquery.SchemaField("logout_time", enums.SqlTypeNames.TIMESTAMP),
        bigquery.SchemaField("ip_address", enums.SqlTypeNames.STRING),
    ]

    with open(filepath, "rb") as json_file:
        load_job = client.load_table_from_file(
            json_file, full_table_id, job_config=job_config
        )

    # Wait for load job to finish.
    load_job.result()

def update_with_dml(
    client: bigquery.Client, project_id: str, dataset_id: str, table_id: str
):
    query_text = f"""
    UPDATE `{project_id}.{dataset_id}.{table_id}`
    SET ip_address = REGEXP_REPLACE(ip_address, r"(\\.[0-9]+)$", ".0")
    WHERE TRUE
    """
    query_job = client.query(query_text)

    # Wait for query job to finish.
    query_job.result()

    print(f"DML query modified {query_job.num_dml_affected_rows} rows.")
    return query_job.num_dml_affected_rows

def run_sample(override_values={}):
    client = bigquery.Client()
    filepath = pathlib.Path(__file__).parent / "user_sessions_data.json"
    project_id = client.project
    dataset_id = "sample_db"
    table_id = "UserSessions"
    load_from_newline_delimited_json(client, filepath, project_id, dataset_id, table_id)
    return update_with_dml(client, project_id, dataset_id, table_id)

¿Qué sigue?

A fin de buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.