Consultar una tabla agrupada en clústeres

Consulta una tabla que tiene una especificación de agrupamiento en clústeres.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Go.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// queryClusteredTable demonstrates querying a table that has a clustering specification.
func queryClusteredTable(w io.Writer, projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	q := client.Query(fmt.Sprintf(`
	SELECT
	  COUNT(1) as transactions,
	  SUM(amount) as total_paid,
	  COUNT(DISTINCT destination) as distinct_recipients
    FROM
	  `+"`%s.%s`"+`
	 WHERE
	    timestamp > TIMESTAMP('2015-01-01')
		AND origin = @wallet`, datasetID, tableID))
	q.Parameters = []bigquery.QueryParameter{
		{
			Name:  "wallet",
			Value: "wallet00001866cb7e0f09a890",
		},
	}
	// Run the query and process the returned row iterator.
	it, err := q.Read(ctx)
	if err != nil {
		return fmt.Errorf("query.Read(): %w", err)
	}
	for {
		var row []bigquery.Value
		err := it.Next(&row)
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintln(w, row)
	}
	return nil
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Java.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableResult;

public class QueryClusteredTable {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "MY_PROJECT_ID";
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    queryClusteredTable(projectId, datasetName, tableName);
  }

  public static void queryClusteredTable(String projectId, String datasetName, String tableName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      String sourceTable = "`" + projectId + "." + datasetName + "." + tableName + "`";
      String query =
          "SELECT word, word_count\n"
              + "FROM "
              + sourceTable
              + "\n"
              // Optimize query performance by filtering the clustered columns in sort order
              + "WHERE corpus = 'romeoandjuliet'\n"
              + "AND word_count >= 1";

      QueryJobConfiguration queryConfig = QueryJobConfiguration.newBuilder(query).build();

      TableResult results = bigquery.query(queryConfig);

      results
          .iterateAll()
          .forEach(row -> row.forEach(val -> System.out.printf("%s,", val.toString())));

      System.out.println("Query clustered table performed successfully.");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Query not performed \n" + e.toString());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Node.js.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryClusteredTable() {
  // Queries a table that has a clustering specification.

  // Create destination table reference
  const dataset = bigquery.dataset(datasetId);
  const destinationTableId = dataset.table(tableId);

  const query = 'SELECT * FROM `bigquery-public-data.samples.shakespeare`';
  const fields = ['corpus'];

  // For all options, see https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/query
  const options = {
    query: query,
    // Location must match that of the dataset(s) referenced in the query.
    location: 'US',
    destination: destinationTableId,
    clusterFields: fields,
  };

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(options);

  console.log(`Job ${job.id} started.`);

  // Print the status and statistics
  console.log('Status:');
  console.log(job.metadata.status);
  console.log('\nJob Statistics:');
  console.log(job.metadata.statistics);
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de BigQuery sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de BigQuery para Python.

Para autenticarte en BigQuery, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para bibliotecas cliente.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the destination table.
# table_id = "your-project.your_dataset.your_table_name"

sql = "SELECT * FROM `bigquery-public-data.samples.shakespeare`"
cluster_fields = ["corpus"]

job_config = bigquery.QueryJobConfig(
    clustering_fields=cluster_fields, destination=table_id
)

# Start the query, passing in the extra configuration.
client.query_and_wait(
    sql, job_config=job_config
)  # Make an API request and wait for job to complete.

table = client.get_table(table_id)  # Make an API request.
if table.clustering_fields == cluster_fields:
    print(
        "The destination table is written using the cluster_fields configuration."
    )

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.