Crie uma tabela particionada por intervalo de números inteiros

Crie uma nova tabela particionada por intervalo de números inteiros num conjunto de dados existente.

Explore mais

Para ver documentação detalhada que inclui este exemplo de código, consulte o seguinte:

Exemplo de código

C#

Antes de experimentar este exemplo, siga as C#instruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API C# BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;

public class BigQueryCreateTableRangePartitioned
{
    public BigQueryTable CreateTable(string projectId, string datasetId, string tableId)
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var dataset = client.GetDataset(datasetId);

        // Note: The field must be a top- level, NULLABLE/REQUIRED field.
        // The only supported type is INTEGER/INT64.
        var partitioning = new RangePartitioning
        {
            Field = "integerField",
            Range = new RangePartitioning.RangeData
            {
                Start = 1,
                Interval = 2,
                End = 10
            }
        };
        var schema = new TableSchemaBuilder
        {
            { "integerField", BigQueryDbType.Int64 },
            { "stringField", BigQueryDbType.String },
            { "booleanField", BigQueryDbType.Bool },
            { "dateField", BigQueryDbType.Date }
        }.Build();

        var table = new Table
        {
            RangePartitioning = partitioning,
            Schema = schema
        };
        return dataset.CreateTable(tableId, table);
    }
}

Go

Antes de experimentar este exemplo, siga as Goinstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Go BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// createTableRangeParitioned demonstrates creating a table and specifying a
// range partitioning configuration.
func createTableRangePartitioned(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "full_name", Type: bigquery.StringFieldType},
		{Name: "city", Type: bigquery.StringFieldType},
		{Name: "zipcode", Type: bigquery.IntegerFieldType},
	}

	metadata := &bigquery.TableMetadata{
		RangePartitioning: &bigquery.RangePartitioning{
			Field: "zipcode",
			Range: &bigquery.RangePartitioningRange{
				Start:    0,
				End:      100000,
				Interval: 10,
			},
		},
		Schema: sampleSchema,
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metadata); err != nil {
		return err
	}
	return nil
}

Java

Antes de experimentar este exemplo, siga as Javainstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Java BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.RangePartitioning;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

// Sample to create a range partitioned table
public class CreateRangePartitionedTable {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("integerField", StandardSQLTypeName.INT64),
            Field.of("stringField", StandardSQLTypeName.STRING),
            Field.of("booleanField", StandardSQLTypeName.BOOL),
            Field.of("dateField", StandardSQLTypeName.DATE));
    createRangePartitionedTable(datasetName, tableName, schema);
  }

  public static void createRangePartitionedTable(
      String datasetName, String tableName, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      // Note: The field must be a top- level, NULLABLE/REQUIRED field.
      // The only supported type is INTEGER/INT64
      RangePartitioning partitioning =
          RangePartitioning.newBuilder()
              .setField("integerField")
              .setRange(
                  RangePartitioning.Range.newBuilder()
                      .setStart(1L)
                      .setInterval(2L)
                      .setEnd(10L)
                      .build())
              .build();

      StandardTableDefinition tableDefinition =
          StandardTableDefinition.newBuilder()
              .setSchema(schema)
              .setRangePartitioning(partitioning)
              .build();
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Range partitioned table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Range partitioned table was not created. \n" + e.toString());
    }
  }
}

Node.js

Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Node.js BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createTableRangePartitioned() {
  // Creates a new integer range partitioned table named "my_table"
  // in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  const schema = [
    {name: 'fullName', type: 'STRING'},
    {name: 'city', type: 'STRING'},
    {name: 'zipcode', type: 'INTEGER'},
  ];

  // To use integer range partitioning, select a top-level REQUIRED or
  // NULLABLE column with INTEGER / INT64 data type. Values that are
  // outside of the range of the table will go into the UNPARTITIONED
  // partition. Null values will be in the NULL partition.
  const rangePartition = {
    field: 'zipcode',
    range: {
      start: 0,
      end: 100000,
      interval: 10,
    },
  };

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    rangePartitioning: rangePartition,
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created with integer range partitioning: `);
  console.log(table.metadata.rangePartitioning);
}

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Python BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING"),
    bigquery.SchemaField("city", "STRING"),
    bigquery.SchemaField("zipcode", "INTEGER"),
]

table = bigquery.Table(table_id, schema=schema)
table.range_partitioning = bigquery.RangePartitioning(
    # To use integer range partitioning, select a top-level REQUIRED /
    # NULLABLE column with INTEGER / INT64 data type.
    field="zipcode",
    range_=bigquery.PartitionRange(start=0, end=100000, interval=10),
)
table = client.create_table(table)  # Make an API request.
print(
    "Created table {}.{}.{}".format(table.project, table.dataset_id, table.table_id)
)

Ruby

Antes de experimentar este exemplo, siga as Rubyinstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Ruby BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

require "google/cloud/bigquery"

##
# Creates a table with range partitioning.
#
# @param dataset_id [String] The ID of the dataset to create the table in.
# @param table_id   [String] The ID of the table to create.
def create_range_partitioned_table dataset_id, table_id
  bigquery = Google::Cloud::Bigquery.new
  dataset = bigquery.dataset dataset_id

  table = dataset.create_table table_id do |t|
    t.schema do |s|
      s.integer "integerField", mode: :required
      s.string "stringField", mode: :nullable
      s.boolean "booleanField", mode: :nullable
      s.date "dateField", mode: :nullable
    end
    t.range_partitioning_field = "integerField"
    t.range_partitioning_start = 1
    t.range_partitioning_interval = 2
    t.range_partitioning_end = 10
  end

  puts "Created range-partitioned table: #{table.table_id}"
end

Terraform

Para saber como aplicar ou remover uma configuração do Terraform, consulte os comandos básicos do Terraform. Para mais informações, consulte a Terraform documentação de referência do fornecedor.

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "mytable"
  deletion_protection = false # set to "true" in production

  range_partitioning {
    field = "ID"
    range {
      start    = 0
      end      = 1000
      interval = 10
    }
  }
  require_partition_filter = true

  schema = <<EOF
[
  {
    "name": "ID",
    "type": "INT64",
    "description": "Item ID"
  },
  {
    "name": "Item",
    "type": "STRING",
    "mode": "NULLABLE"
  }
]
EOF

}

O que se segue?

Para pesquisar e filtrar exemplos de código para outros Google Cloud produtos, consulte o Google Cloud navegador de exemplos.