Créer une table en cluster

Créez une table en cluster.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez la page suivante :

Exemple de code

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Go.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

import (
	"context"
	"fmt"
	"time"

	"cloud.google.com/go/bigquery"
)

// createTableClustered demonstrates creating a BigQuery table with advanced properties like
// partitioning and clustering features.
func createTableClustered(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "timestamp", Type: bigquery.TimestampFieldType},
		{Name: "origin", Type: bigquery.StringFieldType},
		{Name: "destination", Type: bigquery.StringFieldType},
		{Name: "amount", Type: bigquery.NumericFieldType},
	}
	metaData := &bigquery.TableMetadata{
		Schema: sampleSchema,
		TimePartitioning: &bigquery.TimePartitioning{
			Field:      "timestamp",
			Expiration: 90 * 24 * time.Hour,
		},
		Clustering: &bigquery.Clustering{
			Fields: []string{"origin", "destination"},
		},
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metaData); err != nil {
		return err
	}
	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Java.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Clustering;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;
import com.google.cloud.bigquery.TimePartitioning;
import com.google.common.collect.ImmutableList;
import java.util.List;

public class CreateClusteredTable {
  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING),
            Field.of("date", StandardSQLTypeName.DATE));
    createClusteredTable(datasetName, tableName, schema, ImmutableList.of("name", "post_abbr"));
  }

  public static void createClusteredTable(
      String datasetName, String tableName, Schema schema, List<String> clusteringFields) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      TimePartitioning partitioning = TimePartitioning.of(TimePartitioning.Type.DAY);
      // Clustering fields will be consisted of fields mentioned in the schema.
      // BigQuery supports clustering for both partitioned and non-partitioned tables.
      Clustering clustering = Clustering.newBuilder().setFields(clusteringFields).build();

      StandardTableDefinition tableDefinition =
          StandardTableDefinition.newBuilder()
              .setSchema(schema)
              .setTimePartitioning(partitioning)
              .setClustering(clustering)
              .build();
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Clustered table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Clustered table was not created. \n" + e.toString());
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Node.js.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createTableClustered() {
  // Creates a new clustered table named "my_table" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";
  const schema = 'name:string, city:string, zipcode:integer';

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    clustering: {
      fields: ['city', 'zipcode'],
    },
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);
  console.log(`Table ${table.id} created with clustering:`);
  console.log(table.metadata.clustering);
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Python.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour les bibliothèques clientes.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING"),
    bigquery.SchemaField("city", "STRING"),
    bigquery.SchemaField("zipcode", "INTEGER"),
]

table = bigquery.Table(table_id, schema=schema)
table.clustering_fields = ["city", "zipcode"]
table = client.create_table(table)  # Make an API request.
print(
    "Created clustered table {}.{}.{}".format(
        table.project, table.dataset_id, table.table_id
    )
)

Terraform

Pour savoir comment appliquer ou supprimer une configuration Terraform, consultez la page Commandes Terraform de base. Pour en savoir plus, consultez la documentation de référence du fournisseur Terraform.

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "mytable"
  deletion_protection = false # set to "true" in production

  clustering = ["ID", "Created"]

  schema = <<EOF
[
  {
    "name": "ID",
    "type": "INT64",
    "description": "Item ID"
  },
  {
    "name": "Item",
    "type": "STRING",
    "mode": "NULLABLE"
  },
 {
   "name": "Created",
   "type": "TIMESTAMP"
 }
]
EOF

}

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.