Crie uma rotina com DDL

Crie uma rotina com uma consulta DDL.

Exemplo de código

Go

Antes de experimentar este exemplo, siga as Goinstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Go BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// createRoutineDDL demonstrates creating a new BigQuery UDF using a DDL query.
func createRoutineDDL(projectID, datasetID, routineID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// routineID := "myroutineid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	routineName, err := client.Dataset(datasetID).Routine(routineID).Identifier(bigquery.StandardSQLID)
	if err != nil {
		return fmt.Errorf("couldn't generate identifier: %w", err)
	}

	sql := fmt.Sprintf(`CREATE FUNCTION %s(
        	arr ARRAY<STRUCT<name STRING, val INT64>>
    		) AS (
        	(SELECT SUM(IF(elem.name = "foo",elem.val,null)) FROM UNNEST(arr) AS elem)
    		)`, routineName)

	job, err := client.Query(sql).Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}
	if err := status.Err(); err != nil {
		return err
	}
	return nil
}

Java

Antes de experimentar este exemplo, siga as Javainstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Java BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.QueryJobConfiguration;

// Sample to create a routine using DDL
public class CreateRoutineDdl {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "MY_PROJECT_ID";
    String datasetId = "MY_DATASET_ID";
    String routineId = "MY_ROUTINE_ID";
    String sql =
        "CREATE FUNCTION "
            + "`"
            + projectId
            + "."
            + datasetId
            + "."
            + routineId
            + "`"
            + "( arr ARRAY<STRUCT<name STRING, val INT64>>) AS "
            + "( (SELECT SUM(IF(elem.name = \"foo\",elem.val,null)) FROM UNNEST(arr) AS elem))";
    createRoutineDdl(sql);
  }

  public static void createRoutineDdl(String sql) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      QueryJobConfiguration config = QueryJobConfiguration.newBuilder(sql).build();

      // create a routine using query and it will wait to complete job.
      Job job = bigquery.create(JobInfo.of(config));
      job = job.waitFor();
      if (job.isDone()) {
        System.out.println("Routine created successfully");
      } else {
        System.out.println("Routine was not created");
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Routine was not created. \n" + e.toString());
    }
  }
}

Node.js

Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Node.js BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createRoutineDDL() {
  // Creates a routine using DDL.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // projectId = 'my_project';
  // const datasetId = 'my_dataset';
  // const routineId = 'my_routine';

  const query = `CREATE FUNCTION \`${projectId}.${datasetId}.${routineId}\`(
      arr ARRAY<STRUCT<name STRING, val INT64>>
  ) AS (
      (SELECT SUM(IF(elem.name = "foo",elem.val,null)) FROM UNNEST(arr) AS elem)
  )`;

  const options = {
    query: query,
  };

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(options);
  console.log(`Job ${job.id} started.`);

  // Wait for the query to finish
  await job.getQueryResults();

  console.log(`Routine ${routineId} created.`);
}
createRoutineDDL();

Python

Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do BigQuery com bibliotecas cliente. Para mais informações, consulte a API Python BigQuery documentação de referência.

Para se autenticar no BigQuery, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para bibliotecas de cliente.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Choose a fully-qualified ID for the routine.
# routine_id = "my-project.my_dataset.my_routine"

sql = """
CREATE FUNCTION `{}`(
    arr ARRAY<STRUCT<name STRING, val INT64>>
) AS (
    (SELECT SUM(IF(elem.name = "foo",elem.val,null)) FROM UNNEST(arr) AS elem)
)
""".format(
    routine_id
)
query_job = client.query(sql)  # Make an API request.
query_job.result()  # Wait for the job to complete.

print("Created routine {}".format(query_job.ddl_target_routine))

O que se segue?

Para pesquisar e filtrar exemplos de código para outros Google Cloud produtos, consulte o Google Cloud navegador de exemplos.