Visualização WRITE_API_TIMELINE

A visualização INFORMATION_SCHEMA.WRITE_API_TIMELINE contém estatísticas agregadas por minuto de ingestão da API BigQuery Storage Write para o projeto atual.

Consulte as INFORMATION_SCHEMA visualizações da API Write para recuperar informações históricas e em tempo real sobre a ingestão de dados no BigQuery que usa essa API. Consulte API BigQuery Storage Write para mais informações.

Permissão necessária

Para consultar a visualização INFORMATION_SCHEMA.WRITE_API_TIMELINE, você precisa da permissão bigquery.tables.list do Identity and Access Management (IAM) para o projeto.

Cada um dos seguintes papéis predefinidos do IAM inclui a permissão necessária:

  • roles/bigquery.user
  • roles/bigquery.dataViewer
  • roles/bigquery.dataEditor
  • roles/bigquery.dataOwner
  • roles/bigquery.metadataViewer
  • roles/bigquery.resourceAdmin
  • roles/bigquery.admin

Para mais informações sobre as permissões do BigQuery, consulte Controle de acesso com o IAM.

Esquema

Quando você consulta as visualizações INFORMATION_SCHEMA da API BigQuery Storage Write, os resultados da consulta contêm informações históricas e em tempo real sobre a ingestão de dados no BigQuery usando a API BigQuery Storage Write. Cada linha nas visualizações a seguir representa estatísticas para ingestão em uma tabela específica, agregadas em um intervalo de um minuto a partir de start_timestamp. As estatísticas são agrupadas por tipo de stream e código de erro. Portanto, haverá uma linha para cada tipo de stream e cada um encontrou o código do erro durante o intervalo de um minuto para cada combinação de carimbo de data/hora e tabela. As solicitações bem-sucedidas têm o código do erro definido como OK. Se nenhum dado foi ingerido em uma tabela durante um determinado período, nenhuma linha estará presente para os carimbos de data/hora correspondentes dessa tabela.

As visualizações INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_* têm o seguinte esquema:

Nome da coluna Tipo de dados Valor
start_timestamp TIMESTAMP (Coluna de particionamento) Carimbo de data/hora de início do intervalo de 1 minuto das estatísticas agregadas.
project_id STRING (Coluna de clustering) ID do projeto.
project_number INTEGER Número do projeto.
dataset_id STRING (Coluna de clustering) ID do conjunto de dados.
table_id STRING (Coluna de clustering) ID da tabela.
stream_type STRING O tipo de stream usado para a ingestão de dados com a API BigQuery Storage Write. Deve ser "DEFAULT", "COMMITTED", "BUFFERED" ou "PENDING".
error_code STRING Código de erro retornado para as solicitações especificadas por essa linha. "OK" para solicitações bem-sucedidas.
total_requests INTEGER Número total de solicitações dentro do intervalo de 1 minuto.
total_rows INTEGER Número total de linhas de todas as solicitações dentro do intervalo de 1 minuto.
total_input_bytes INTEGER Número total de bytes de todas as linhas dentro do intervalo de um minuto.

Retenção de dados

Esta visualização contém o histórico de processamento dos últimos 180 dias da API BigQuery Storage Write.

Escopo e sintaxe

As consultas nessa visualização precisam incluir um qualificador de região. Se você não especificar um qualificador regional, os metadados serão recuperados de todas as regiões. A tabela a seguir explica o escopo da região dessa visualização:

Nome da visualização Escopo do recurso Escopo da região
[PROJECT_ID.]`region-REGION`.INFORMATION_SCHEMA.WRITE_API_TIMELINE[_BY_PROJECT] Nível do projeto REGION
Substitua:

  • Opcional: PROJECT_ID: o ID do seu projeto do Google Cloud . Se não for especificado, o projeto padrão será usado.

  • REGION: qualquer nome da região do conjunto de dados. Por exemplo, `region-us`.

  • Exemplo

    • Para consultar dados na multirregião EUA, use `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT.
    • Para consultar dados na multirregião UE, utilize `region-eu`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT.
    • Para consultar dados na região asia-northeast1, use `region-asia-northeast1`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT.

    Para obter uma lista de regiões disponíveis, consulte locais do conjunto de dados.

    Exemplos

    Exemplo 1: falhas recentes na ingestão da API BigQuery Storage Write

    O exemplo a seguir calcula o detalhamento por minuto do total de solicitações com falha de todas as tabelas do projeto nos últimos 30 minutos, dividido pelo tipo de transmissão e o código de erro:

    SELECT
      start_timestamp,
      stream_type,
      error_code,
      SUM(total_requests) AS num_failed_requests
    FROM
      `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE
    WHERE
      error_code != 'OK'
      AND start_timestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP, INTERVAL 30 MINUTE)
    GROUP BY
      start_timestamp,
      stream_type,
      error_code
    ORDER BY
      start_timestamp DESC;

    O resultado será semelhante ao seguinte:

    +---------------------+-------------+------------------+---------------------+
    |   start_timestamp   | stream_type |    error_code    | num_failed_requests |
    +---------------------+-------------+------------------+---------------------+
    | 2023-02-24 00:25:00 | PENDING     | NOT_FOUND        |                   5 |
    | 2023-02-24 00:25:00 | DEFAULT     | INVALID_ARGUMENT |                   1 |
    | 2023-02-24 00:25:00 | DEFAULT     | DEADLINE_EXCEEDED|                   4 |
    | 2023-02-24 00:24:00 | PENDING     | INTERNAL         |                   3 |
    | 2023-02-24 00:24:00 | DEFAULT     | INVALID_ARGUMENT |                   1 |
    | 2023-02-24 00:24:00 | DEFAULT     | DEADLINE_EXCEEDED|                   2 |
    +---------------------+-------------+------------------+---------------------+
    
    Exemplo 2: detalhamento por minuto de todas as solicitações com códigos de erro

    O exemplo a seguir calcula um detalhamento por minuto de solicitações de anexo bem-sucedidas e com falha, divididas em categorias de código de erro. Essa consulta pode ser usada para preencher um painel.

    SELECT
      start_timestamp,
      SUM(total_requests) AS total_requests,
      SUM(total_rows) AS total_rows,
      SUM(total_input_bytes) AS total_input_bytes,
      SUM(
        IF(
          error_code IN (
            'INVALID_ARGUMENT', 'NOT_FOUND', 'CANCELLED', 'RESOURCE_EXHAUSTED',
            'ALREADY_EXISTS', 'PERMISSION_DENIED', 'UNAUTHENTICATED',
            'FAILED_PRECONDITION', 'OUT_OF_RANGE'),
          total_requests,
          0)) AS user_error,
      SUM(
        IF(
          error_code IN (
            'DEADLINE_EXCEEDED','ABORTED', 'INTERNAL', 'UNAVAILABLE',
            'DATA_LOSS', 'UNKNOWN'),
          total_requests,
          0)) AS server_error,
      SUM(IF(error_code = 'OK', 0, total_requests)) AS total_error,
    FROM
      `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE
    GROUP BY
      start_timestamp
    ORDER BY
      start_timestamp DESC;

    O resultado será semelhante ao seguinte:

    +---------------------+----------------+------------+-------------------+------------+--------------+-------------+
    |   start_timestamp   | total_requests | total_rows | total_input_bytes | user_error | server_error | total_error |
    +---------------------+----------------+------------+-------------------+------------+--------------+-------------+
    | 2020-04-15 22:00:00 |         441854 |     441854 |       23784853118 |          0 |           17 |          17 |
    | 2020-04-15 21:59:00 |         355627 |     355627 |       26101982742 |          8 |            0 |          13 |
    | 2020-04-15 21:58:00 |         354603 |     354603 |       26160565341 |          0 |            0 |           0 |
    | 2020-04-15 21:57:00 |         298823 |     298823 |       23877821442 |          2 |            0 |           2 |
    +---------------------+----------------+------------+-------------------+------------+--------------+-------------+
    
    Exemplo 3: tabelas com o maior tráfego de entrada

    O exemplo a seguir retorna as estatísticas de ingestão da API BigQuery Storage Write para as 10 tabelas com mais tráfego de entrada:

    SELECT
      project_id,
      dataset_id,
      table_id,
      SUM(total_rows) AS num_rows,
      SUM(total_input_bytes) AS num_bytes,
      SUM(total_requests) AS num_requests
    FROM
      `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT
    GROUP BY
      project_id,
      dataset_id,
      table_id
    ORDER BY
      num_bytes DESC
    LIMIT 10;

    O resultado será semelhante ao seguinte:

    +----------------------+------------+-------------------------------+------------+----------------+--------------+
    |      project_id      | dataset_id |           table_id            |  num_rows  |   num_bytes    | num_requests |
    +----------------------+------------+-------------------------------+------------+----------------+--------------+
    | my-project           | dataset1   | table1                        | 8016725532 | 73787301876979 |   8016725532 |
    | my-project           | dataset1   | table2                        |   26319580 | 34199853725409 |     26319580 |
    | my-project           | dataset2   | table1                        |   38355294 | 22879180658120 |     38355294 |
    | my-project           | dataset1   | table3                        |  270126906 | 17594235226765 |    270126906 |
    | my-project           | dataset2   | table2                        |   95511309 | 17376036299631 |     95511309 |
    | my-project           | dataset2   | table3                        |   46500443 | 12834920497777 |     46500443 |
    | my-project           | dataset2   | table4                        |   25846270 |  7487917957360 |     25846270 |
    | my-project           | dataset1   | table4                        |   18318404 |  5665113765882 |     18318404 |
    | my-project           | dataset1   | table5                        |   42829431 |  5343969665771 |     42829431 |
    | my-project           | dataset1   | table6                        |    8771021 |  5119004622353 |      8771021 |
    +----------------------+------------+-------------------------------+------------+----------------+--------------+
    
    Exemplo 4: proporção de erros de ingestão da API BigQuery Storage Write em uma tabela

    No exemplo a seguir, calculamos uma análise detalhada dos erros por dia em uma tabela específica, dividida por código de erro:

    SELECT
      TIMESTAMP_TRUNC(start_timestamp, DAY) as day,
      project_id,
      dataset_id,
      table_id,
      error_code,
      SUM(total_rows) AS num_rows,
      SUM(total_input_bytes) AS num_bytes,
      SUM(total_requests) AS num_requests
    FROM
      `region-us`.INFORMATION_SCHEMA.WRITE_API_TIMELINE_BY_PROJECT
    WHERE
      table_id LIKE 'my_table'
    GROUP BY
      project_id, dataset_id, table_id, error_code, day
    ORDER BY
      day, project_id, dataset_id DESC;

    O resultado será semelhante ao seguinte:

    +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+
    |         day         |  project_id | dataset_id | table_id |   error_code   | num_rows | num_bytes | num_requests |
    +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+
    | 2020-04-21 00:00:00 | my_project  | my_dataset | my_table | OK             |       41 |    252893 |           41 |
    | 2020-04-20 00:00:00 | my_project  | my_dataset | my_table | OK             |     2798 |  10688286 |         2798 |
    | 2020-04-19 00:00:00 | my_project  | my_dataset | my_table | OK             |     2005 |   7979495 |         2005 |
    | 2020-04-18 00:00:00 | my_project  | my_dataset | my_table | OK             |     2054 |   7972378 |         2054 |
    | 2020-04-17 00:00:00 | my_project  | my_dataset | my_table | OK             |     2056 |   6978079 |         2056 |
    | 2020-04-17 00:00:00 | my_project  | my_dataset | my_table | INTERNAL       |        4 |     10825 |            4 |
    +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+