Tutoriel: Déployer une VM existante dans un cluster GKE sur Bare Metal à l'aide de l'environnement d'exécution des VM sur GDC


Ce document fournit un guide par étapes pour déployer une charge de travail basée sur une machine virtuelle (VM) dans Google Distributed Cloud à l'aide de l'environnement d'exécution de VM sur GDC. La charge de travail utilisée dans ce guide est l'exemple d'application de point de vente. Cette application représente un terminal de point de vente type exécuté sur du matériel sur site dans un magasin de détail.

Dans ce document, vous migrez cette application d'une VM vers un cluster GKE sur Bare Metal et accédez à l'interface Web de l'application. Pour migrer une VM existante vers le cluster, vous devez d'abord créer une image disque de cette VM. L'image doit ensuite être hébergée dans un dépôt auquel le cluster peut accéder. Enfin, l'URL de cette image peut être utilisée pour créer la VM. L'environnement d'exécution de VM sur GDC s'attend à ce que les images soient au format qcow2. Si vous fournissez un type d'image différent, elle est automatiquement convertie au format qcow2. Pour éviter des conversions répétitives et permettre la réutilisation, vous pouvez convertir une image de disque virtuel et héberger l'image qcow2.

Ce document utilise une image préparée d'une instance de VM Compute Engine dans laquelle la charge de travail s'exécute en tant que service systemd. Vous pouvez suivre la même procédure pour déployer votre propre application.

Objectifs

Avant de commencer

Pour terminer ce document, vous avez besoin des ressources suivantes:

  • Un accès à un cluster Google Distributed Cloud version 1.12.0 ou ultérieure créé à l'aide du guide Exécuter Google Distributed Cloud sur des VM Compute Engine avec un équilibreur de charge manuel. Ce document configure les ressources réseau pour que vous puissiez accéder à la charge de travail exécutée dans la VM via un navigateur. Si ce comportement n'est pas nécessaire, vous pouvez suivre ce document à l'aide de n'importe quel Google Distributed Cloud.
  • Une station de travail répondant aux exigences suivantes :
    • A accès à votre cluster à l'aide de la bmctl.
    • A accès à votre cluster via la kubectl.

Activer l'environnement d'exécution des VM sur GDC et installer le plug-in virtctl

La définition de ressource personnalisée (CRD, Custom Resource Definition) de l'environnement d'exécution de VM sur GDC fait partie de tous les clusters GKE sur Bare Metal depuis la version 1.10. Une instance de la ressource personnalisée VMRuntime est déjà créée lors de l'installation. Cependant, il est désactivé par défaut.

  1. Activez l'environnement d'exécution des VM sur GDC:

    sudo bmctl enable vmruntime --kubeconfig KUBECONFIG_PATH
    
    • KUBECONFIG_PATH: chemin d'accès au fichier de configuration Kubernetes du cluster d'utilisateur Google Distributed Cloud
  2. Vérifiez que VMRuntime est activé:

    kubectl wait --for=jsonpath='{.status.ready}'=true vmruntime vmruntime
    

    La préparation du VMRuntime peut prendre quelques minutes. Si elle n'est pas prête, vérifiez plusieurs fois avec de courts délais. L'exemple de résultat suivant montre que l'élément VMRuntime est prêt:

    vmruntime.vm.cluster.gke.io/vmruntime condition met
    
  3. Installez le plug-in virtctl pour kubectl:

    sudo -E bmctl install virtctl
    

    L'exemple de résultat suivant montre que le processus d'installation du plug-in virtctl est terminé:

    Please check the logs at bmctl-workspace/log/install-virtctl-20220831-182135/install-virtctl.log
    [2022-08-31 18:21:35+0000] Install virtctl succeeded
    
  4. Vérifiez l'installation du plug-in virtctl:

    kubectl virt
    

    L'exemple de résultat suivant montre que le plug-in virtctl peut être utilisé avec kubectl:

    Available Commands:
      addvolume         add a volume to a running VM
      completion        generate the autocompletion script for the specified shell
      config            Config subcommands.
      console           Connect to a console of a virtual machine instance.
      create            Create subcommands.
      delete            Delete  subcommands.
    ...
    

Déployer la charge de travail basée sur des VM

Lorsque vous déployez une VM dans Google Distributed Cloud, l'environnement d'exécution de VM sur GDC attend une image de VM. Cette image sert de disque de démarrage à la VM déployée.

Dans ce tutoriel, vous allez migrer une charge de travail basée sur des VM Compute Engine vers un cluster GKE sur Bare Metal. Cette VM Compute Engine a été créée et l'exemple d'application de point de vente a été configuré pour s'exécuter en tant que service systemd. Une image disque de cette VM et la charge de travail de l'application PoS ont été créées dans Google Cloud. Cette image a ensuite été exportée dans un bucket Cloud Storage en tant qu'image qcow2. Vous utiliserez cette image qcow2 préparée au préalable dans les étapes suivantes.

Le code source de ce document est disponible dans le dépôt GitHub anthos-samples. Vous allez utiliser les ressources de ce dépôt pour effectuer les étapes suivantes.

  1. Déployez un StatefulSet MySQL. L'application de point de vente s'attend à se connecter à une base de données MySQL pour stocker les informations d'inventaire et de paiement. Le dépôt du point de vente contient un exemple de fichier manifeste qui déploie un objet MySQL StatefulSet, configure un objet ConfigMap associé et un objet Service Kubernetes. Le fichier ConfigMap définit les identifiants de l'instance MySQL, qui sont les mêmes identifiants transmis à l'application de point de vente.

    kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/point-of-sale/main/k8-manifests/common/mysql-db.yaml
    
  2. Déployez la charge de travail de VM à l'aide de l'image qcow2 préparée à l'avance:

    kubectl virt create vm pos-vm \
        --boot-disk-size=80Gi \
        --memory=4Gi \
        --vcpu=2 \
        --image=https://storage.googleapis.com/pos-vm-images/pos-vm.qcow2
    

    Cette commande crée un fichier YAML nommé d'après la VM (google-virtctl/pos-vm.yaml). Vous pouvez inspecter ce fichier pour voir la définition de VirtualMachine et VirtualMachineDisk. Au lieu d'utiliser le plug-in virtctl, vous auriez pu déployer la charge de travail de la VM à l'aide des définitions de modèle de ressource Kubernetes (KRM), comme indiqué dans le fichier YAML créé.

    Lorsque la commande s'exécute correctement, elle produit un résultat semblable à l'exemple suivant, qui explique les différentes ressources créées:

    Constructing manifest for vm "pos-vm":
    Manifest for vm "pos-vm" is saved to /home/tfadmin/google-virtctl/pos-vm.yaml
    Applying manifest for vm "pos-vm"
    Created gvm "pos-vm"
    
  3. Vérifiez l'état de création de la VM.

    La ressource VirtualMachine est identifiée par la ressource vm.cluster.gke.io/v1.VirtualMachine dans l'environnement d'exécution de la VM sur GDC. Sa forme abrégée est gvm.

    Lorsque vous créez une VM, les deux ressources suivantes sont créées:

    • VirtualMachineDisk est le disque persistant dans lequel le contenu de l'image de VM est importé.
    • Une VirtualMachine est l'instance de VM elle-même. Le DataVolume est installé sur la VirtualMachine avant le démarrage de la VM.

    Vérifiez l'état de VirtualMachineDisk. VirtualMachineDisk crée en interne une ressource DataVolume. L'image de la VM est importée dans le DataVolume installé dans la VM:

    kubectl get datavolume
    

    L'exemple de résultat suivant montre le début de l'importation de l'image:

    NAME              PHASE             PROGRESS   RESTARTS   AGE
    pos-vm-boot-dv    ImportScheduled   N/A                   8s
    
  4. Vérifiez l'état du VirtualMachine. VirtualMachine est à l'état Provisioning jusqu'à ce que DataVolume soit complètement importé:

    kubectl get gvm
    

    L'exemple de résultat suivant montre le provisionnement de VirtualMachine:

    NAME      STATUS         AGE     IP
    pos-vm    Provisioning   1m
    
  5. Attendez que l'image de VM soit entièrement importée dans DataVolume. Continuez à surveiller la progression pendant l'importation de l'image:

    kubectl get datavolume -w
    

    L'exemple de résultat suivant montre l'image disque en cours d'importation:

    NAME              PHASE              PROGRESS   RESTARTS   AGE
    pos-vm-boot-dv   ImportInProgress   0.00%                 14s
    ...
    ...
    pos-vm-boot-dv   ImportInProgress   0.00%                 31s
    pos-vm-boot-dv   ImportInProgress   1.02%                 33s
    pos-vm-boot-dv   ImportInProgress   1.02%                 35s
    ...
    

    Une fois l'importation terminée et le DataVolume créé, l'exemple de résultat suivant affiche le PHASE de Succeeded :

    kubectl get datavolume
    
    NAME              PHASE             PROGRESS   RESTARTS   AGE
    pos-vm-boot-dv    Succeeded         100.0%                14m18s
    
  6. Vérifiez que VirtualMachine a bien été créé:

    kubectl get gvm
    

    Si la création réussit, STATUS affiche RUNNING, comme dans l'exemple suivant, à côté de l'adresse IP de la VM:

    NAME      STATUS    AGE     IP
    pos-vm    Running   40m     192.168.3.250
    

Se connecter à la VM et vérifier l'état de l'application

L'image utilisée pour la VM inclut l'exemple d'application de point de vente. L'application est configurée pour démarrer automatiquement au démarrage en tant que service systemd. Les fichiers de configuration des services systemd sont disponibles dans le répertoire pos-systemd-services.

  1. Connectez-vous à la console de la VM. Exécutez la commande suivante, puis appuyez sur Entrée lorsque le message Successfully connected to pos-vm… s'affiche:

    kubectl virt console pos-vm
    

    Cette commande génère l'exemple de résultat suivant, qui vous invite à saisir les identifiants:

    Successfully connected to pos-vm console. The escape sequence is ^]
    
    pos-from-public-image login:
    

    Utilisez le compte utilisateur et le mot de passe suivants. Ce compte a été configuré dans la VM d'origine à partir de laquelle l'image de l'environnement d'exécution de la VM sur la machine virtuelle GDC a été créée.

    • Nom d'utilisateur de connexion: abmuser
    • Mot de passe : abmworks
  2. Vérifiez l'état des services de l'application de point de vente. L'application de point de vente comprend trois services: l'API, l'inventaire et les paiements. Ces services s'exécutent tous en tant que services système.

    Les trois services se connectent tous les uns aux autres via localhost. Cependant, l'application se connecte à la base de données MySQL à l'aide d'un service Kubernetes mysql-db créé à l'étape précédente. Ce comportement signifie que la VM est automatiquement connectée au même réseau que Pods et Services, ce qui permet une communication transparente entre les charges de travail de la VM et d'autres applications conteneurisées. Vous n'avez rien d'autre à faire pour rendre le Services Kubernetes accessible à partir des VM déployées à l'aide de l'environnement d'exécution de VM sur GDC.

    sudo systemctl status pos*
    

    L'exemple de résultat suivant indique l'état des trois services et le service système racine, pos.service:

    ● pos_payments.service - Payments service of the Point of Sale Application
        Loaded: loaded (/etc/systemd/system/pos_payments.service; enabled; vendor >
        Active: active (running) since Tue 2022-06-21 18:55:30 UTC; 1h 10min ago
      Main PID: 750 (payments.sh)
          Tasks: 27 (limit: 4664)
        Memory: 295.1M
        CGroup: /system.slice/pos_payments.service
                ├─750 /bin/sh /pos/scripts/payments.sh
                └─760 java -jar /pos/jars/payments.jar --server.port=8083
    
    ● pos_inventory.service - Inventory service of the Point of Sale Application
        Loaded: loaded (/etc/systemd/system/pos_inventory.service; enabled; vendor>
        Active: active (running) since Tue 2022-06-21 18:55:30 UTC; 1h 10min ago
      Main PID: 749 (inventory.sh)
          Tasks: 27 (limit: 4664)
        Memory: 272.6M
        CGroup: /system.slice/pos_inventory.service
                ├─749 /bin/sh /pos/scripts/inventory.sh
                └─759 java -jar /pos/jars/inventory.jar --server.port=8082
    
    ● pos.service - Point of Sale Application
        Loaded: loaded (/etc/systemd/system/pos.service; enabled; vendor preset: e>
        Active: active (exited) since Tue 2022-06-21 18:55:30 UTC; 1h 10min ago
      Main PID: 743 (code=exited, status=0/SUCCESS)
          Tasks: 0 (limit: 4664)
        Memory: 0B
        CGroup: /system.slice/pos.service
    
    Jun 21 18:55:30 pos-vm systemd[1]: Starting Point of Sale Application...
    Jun 21 18:55:30 pos-vm systemd[1]: Finished Point of Sale Application.
    
    ● pos_apiserver.service - API Server of the Point of Sale Application
        Loaded: loaded (/etc/systemd/system/pos_apiserver.service; enabled; vendor>
        Active: active (running) since Tue 2022-06-21 18:55:31 UTC; 1h 10min ago
      Main PID: 751 (api-server.sh)
          Tasks: 26 (limit: 4664)
        Memory: 203.1M
        CGroup: /system.slice/pos_apiserver.service
                ├─751 /bin/sh /pos/scripts/api-server.sh
                └─755 java -jar /pos/jars/api-server.jar --server.port=8081
    
  3. Quittez la VM. Pour quitter la connexion à la console, utilisez la séquence d'échappement ^] en appuyant sur Ctrl + ].

Accéder à la charge de travail basée sur des VM

Si votre cluster a été configuré en suivant le guide Exécuter Google Distributed Cloud sur des VM Compute Engine avec un équilibreur de charge manuel, il dispose déjà d'une ressource Ingress appelée pos-ingress. Cette ressource achemine le trafic de l'adresse IP externe de l'équilibreur de charge d'entrée vers le service du serveur d'API de l'exemple d'application du point de vente.

  1. Si votre cluster ne dispose pas de cette ressource Ingress, créez-la en appliquant le fichier manifeste suivant:

    kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/anthos-samples/main/anthos-bm-gcp-terraform/resources/manifests/pos-ingress.yaml
    
    apiVersion: networking.k8s.io/v1
    kind: Ingress
    metadata:
      name: pos-ingress
    spec:
      rules:
      - http:
          paths:
          - path: /
            pathType: Prefix
            backend:
              service:
                name: api-server-svc
                port:
                  number: 8080
  2. Créez un Service Kubernetes qui achemine le trafic vers la VM. La ressource Ingress achemine le trafic vers ce Service:

    kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/anthos-samples/main/anthos-vmruntime/pos-service.yaml
    

    L'exemple de résultat suivant confirme la création d'un service:

    service/api-server-svc created
    
    apiVersion: v1
    kind: Service
    metadata:
      name: api-server-svc
    spec:
      selector:
        kubevirt/vm: pos-vm
      ports:
      - protocol: TCP
        port: 8080
        targetPort: 8081
  3. Obtenez l'adresse IP externe de l'équilibreur de charge Ingress. L'équilibreur de charge Ingress achemine le trafic en fonction des règles de ressources Ingress. Vous disposez déjà d'une règle pos-ingress pour transférer les requêtes au serveur d'API Service. Ce Service transmet les requêtes à la VM:

    INGRESS_IP=$(kubectl get ingress/pos-ingress -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
    echo $INGRESS_IP
    

    L'exemple de résultat suivant montre l'adresse IP de l'équilibreur de charge Ingress:

    172.29.249.159 # you might have a different IP address
    
  4. Accédez à l'application à l'aide de l'adresse IP de l'équilibreur de charge d'entrée dans un navigateur. Les captures d'écran suivantes montrent un kiosque de point de vente simple avec deux articles. Vous pouvez cliquer sur les articles plusieurs fois si vous souhaitez en commander plusieurs, puis passer commande à l'aide du bouton Payer. Cette expérience montre que vous avez réussi à déployer une charge de travail basée sur une VM dans un cluster Google Distributed Cloud à l'aide de l'environnement d'exécution des VM sur GDC.

UI de l'application de point de vente
Interface utilisateur de l'application de point de vente (cliquez sur l'image pour l'agrandir)

Effectuer un nettoyage

Vous pouvez supprimer toutes les ressources créées dans ce tutoriel, ou ne supprimer que la VM et conserver des ressources réutilisables. La section Supprimer une VM dans Google Distributed Cloud présente en détail les options disponibles.

Tout supprimer

  • Supprimez l'environnement d'exécution de la VM sur GDC VirtualMachine, ainsi que toutes les ressources:

    kubectl virt delete vm pos-vm --all
    

    L'exemple de résultat suivant confirme la suppression:

    vm "pos-vm" used the following resources: 
        gvm: pos-vm
        VirtualMachineDisk: pos-vm-boot-dv
    Start deleting the resources:
        Deleted gvm "pos-vm".
        Deleted VirtualMachineDisk "pos-vm-boot-dv".
    

Supprimer uniquement la VM

  • Si vous supprimez uniquement la VM, la VirtualMachineDisk créée est conservée. Cela permet de réutiliser cette image de VM et de gagner du temps sur l'importation de l'image lors de la création d'une VM.

    kubectl virt delete vm pos-vm
    

    L'exemple de résultat suivant confirme la suppression:

    vm "pos-vm" used the following resources: 
        gvm: pos-vm
        VirtualMachineDisk: pos-vm-boot-dv
    Start deleting the resources:
        Deleted gvm "pos-vm".
    

Étapes suivantes

  • La VM d'origine utilisée dans ce guide est une instance Compute Engine qui exécute Ubuntu 20.04 LTS. L'image de cette VM est accessible publiquement via le bucket Cloud Storage pos-vm-images. Pour en savoir plus sur la configuration de la VM et sur la création de son image, consultez les instructions du dépôt de point de vente.
  • Lorsque vous créez une VM dans un cluster Google Distributed Cloud à l'aide de la commande kubectl virt create vm pos-vm, un fichier YAML nommé d'après la VM (google-virtctl/pos-vm.yaml) est créé. Vous pouvez inspecter le fichier pour voir la définition de VirtualMachine et de VirtualMachineDisk. Au lieu d'utiliser le plug-in virtctl, vous pouvez déployer une VM à l'aide de définitions KRM, comme indiqué dans le fichier YAML créé.