이 문서에서는 색인을 조정하여 더 빠른 쿼리 성능과 향상된 검색 결과를 얻는 방법을 설명합니다.
쿼리 분석
다음 SQL 쿼리 예와 같이 EXPLAIN ANALYZE
명령어를 사용하여 쿼리 통계를 분석합니다.
EXPLAIN ANALYZE SELECT result-column
FROM my-table
ORDER BY EMBEDDING_COLUMN <-> embedding('text-embedding-005', 'What is a database?')::vector
LIMIT 1;
응답 예시 QUERY PLAN
에는 소요 시간, 스캔 또는 반환된 행 수, 사용된 리소스와 같은 정보가 포함됩니다.
Limit (cost=0.42..15.27 rows=1 width=32) (actual time=0.106..0.132 rows=1 loops=1)
-> Index Scan using my-scann-index on my-table (cost=0.42..858027.93 rows=100000 width=32) (actual time=0.105..0.129 rows=1 loops=1)
Order By: (embedding_column <-> embedding('text-embedding-005', 'What is a database?')::vector(768))
Limit value: 1
Planning Time: 0.354 ms
Execution Time: 0.141 ms
벡터 색인 측정항목 보기
벡터 색인 측정항목을 사용하여 벡터 색인의 성능을 검토하고, 개선이 필요한 영역을 파악하고, 필요한 경우 측정항목을 기반으로 색인을 조정할 수 있습니다.
모든 벡터 색인 측정항목을 보려면 pg_stat_ann_indexes
뷰를 사용하는 다음 SQL 쿼리를 실행합니다.
SELECT * FROM pg_stat_ann_indexes;
다음과 비슷한 출력이 표시됩니다.
-[ RECORD 1 ]----------+---------------------------------------------------------------------------
relid | 271236
indexrelid | 271242
schemaname | public
relname | t1
indexrelname | t1_ix1
indextype | scann
indexconfig | {num_leaves=100,quantizer=SQ8}
indexsize | 832 kB
indexscan | 0
insertcount | 250
deletecount | 0
updatecount | 0
partitioncount | 100
distribution | {"average": 3.54, "maximum": 37, "minimum": 0, "outliers": [37, 12, 11, 10, 10, 9, 9, 9, 9, 9]}
distributionpercentile |{"10": { "num_vectors": 0, "num_partitions": 0 }, "25": { "num_vectors": 0, "num_partitions": 30 }, "50": { "num_vectors": 3, "num_partitions": 30 }, "75": { "num_vectors": 5, "num_partitions": 19 }, "90": { "num_vectors": 7, "num_partitions": 11 }, "95": { "num_vectors": 9, "num_partitions": 5 }, "99": { "num_vectors": 12, "num_partitions": 4 }, "100": { "num_vectors": 37, "num_partitions": 1 }}
전체 측정항목 목록에 관한 자세한 내용은 벡터 색인 측정항목을 참고하세요.
다음 단계
- 벡터 색인 유지관리
- 임베딩 워크플로 예시를 알아보세요.