Leistung von Vektorabfragen optimieren

In diesem Dokument erfahren Sie, wie Sie Ihre Indexe optimieren, um eine schnellere Abfrageleistung und eine bessere Rückrufleistung zu erzielen.

Abfragen analysieren

Verwenden Sie den Befehl EXPLAIN ANALYZE, um Ihre Abfragestatistiken zu analysieren, wie in der folgenden Beispiel-SQL-Abfrage gezeigt.

  EXPLAIN ANALYZE SELECT result-column
  FROM my-table
  ORDER BY EMBEDDING_COLUMN <-> embedding('text-embedding-005', 'What is a database?')::vector
  LIMIT 1;

Die Beispielantwort QUERY PLAN enthält Informationen wie die benötigte Zeit, die Anzahl der gescannten oder zurückgegebenen Zeilen und die verwendeten Ressourcen.

Limit  (cost=0.42..15.27 rows=1 width=32) (actual time=0.106..0.132 rows=1 loops=1)
  ->  Index Scan using my-scann-index on my-table  (cost=0.42..858027.93 rows=100000 width=32) (actual time=0.105..0.129 rows=1 loops=1)
        Order By: (embedding_column <-> embedding('text-embedding-005', 'What is a database?')::vector(768))
        Limit value: 1
Planning Time: 0.354 ms
Execution Time: 0.141 ms

Messwerte für Vektorindexe ansehen

Mithilfe von Messwerten für Vektorindexe können Sie die Leistung Ihres Vektorindex prüfen, Verbesserungsmöglichkeiten erkennen und den Index bei Bedarf anhand der Messwerte optimieren.

Wenn Sie alle Messwerte für den Vektorindex aufrufen möchten, führen Sie die folgende SQL-Abfrage aus, in der die Ansicht pg_stat_ann_indexes verwendet wird:

SELECT * FROM pg_stat_ann_indexes;

Die Ausgabe sollte in etwa so aussehen:

-[ RECORD 1 ]----------+---------------------------------------------------------------------------
relid                  | 271236
indexrelid             | 271242
schemaname             | public
relname                | t1
indexrelname           | t1_ix1
indextype              | scann
indexconfig            | {num_leaves=100,quantizer=SQ8}
indexsize              | 832 kB
indexscan              | 0
insertcount            | 250
deletecount            | 0
updatecount            | 0
partitioncount         | 100
distribution           | {"average": 3.54, "maximum": 37, "minimum": 0, "outliers": [37, 12, 11, 10, 10, 9, 9, 9, 9, 9]}
distributionpercentile |{"10": { "num_vectors": 0, "num_partitions": 0 }, "25": { "num_vectors": 0, "num_partitions": 30 }, "50": { "num_vectors": 3, "num_partitions": 30 }, "75": { "num_vectors": 5, "num_partitions": 19 }, "90": { "num_vectors": 7, "num_partitions": 11 }, "95": { "num_vectors": 9, "num_partitions": 5 }, "99": { "num_vectors": 12, "num_partitions": 4 }, "100": { "num_vectors": 37, "num_partitions": 1 }}

Eine vollständige Liste der Messwerte finden Sie unter Messwerte für Vektorindexe.

Nächste Schritte