Vision API では、オブジェクト ローカライズを使用して、画像内の複数のオブジェクトを検出して抽出できます。
オブジェクト ローカライズにより、画像内のオブジェクトが識別され、オブジェクトごとに LocalizedObjectAnnotation が指定されます。LocalizedObjectAnnotation
ごとに、オブジェクトに関する情報、オブジェクトの位置、画像内でオブジェクトがある領域の四角い境界線が識別されます。
オブジェクト ローカライズでは、画像内で目立っているオブジェクトとそれほど目立たないオブジェクトの両方が識別されます。
オブジェクト情報は英語でのみ返されます。Cloud Translation は、英語のラベルを多数の他言語のいずれかに翻訳できます。

たとえば、この API によって、上記の画像内のオブジェクトに関して以下の情報と境界の位置情報が返されます。
名前 | mid | スコア | 境界 |
---|---|---|---|
Bicycle wheel | /m/01bqk0 | 0.89648587 | (0.32076266, 0.78941387), (0.43812272, 0.78941387), (0.43812272, 0.97331065), (0.32076266, 0.97331065) |
Bicycle | /m/0199g | 0.886761 | (0.312, 0.6616471), (0.638353, 0.6616471), (0.638353, 0.9705882), (0.312, 0.9705882) |
Bicycle wheel | /m/01bqk0 | 0.6345275 | (0.5125398, 0.760708), (0.6256646, 0.760708), (0.6256646, 0.94601655), (0.5125398, 0.94601655) |
Picture frame | /m/06z37_ | 0.6207608 | (0.79177403, 0.16160682), (0.97047985, 0.16160682), (0.97047985, 0.31348917), (0.79177403, 0.31348917) |
Tire | /m/0h9mv | 0.55886006 | (0.32076266, 0.78941387), (0.43812272, 0.78941387), (0.43812272, 0.97331065), (0.32076266, 0.97331065) |
Door | /m/02dgv | 0.5160098 | (0.77569866, 0.37104446), (0.9412425, 0.37104446), (0.9412425, 0.81507325), (0.77569866, 0.81507325) |
mid には、ラベルの Google Knowledge Graph エントリに対応する MID(Machine-generated Identifier)が格納されます。mid の値の調べ方については、Google Knowledge Graph Search API のドキュメントをご覧ください。
使ってみる
Google Cloud を初めて使用される方は、アカウントを作成して、実際のシナリオでの Cloud Vision API のパフォーマンスを評価してください。新規のお客様には、ワークロードの実行、テスト、デプロイができる無料クレジット $300 分を差し上げます。
Cloud Vision API の無料トライアルオブジェクト ローカライズのリクエスト
GCP プロジェクトと認証の設定
ローカル画像でのオブジェクトの検出
Vision API は、リクエストの本文で画像ファイルのコンテンツを Base64 エンコードの文字列として送信し、ローカル画像ファイルの特徴検出を行います。
REST とコマンドライン
リクエストのデータを使用する前に、次のように置き換えます。
- BASE64_ENCODED_IMAGE: バイナリ画像データの base64 表現(ASCII 文字列)。これは次のような文字列になります。
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- RESULTS_INT:(省略可)返される結果の整数値。
"maxResults"
フィールドとその値を省略した場合、API はデフォルト値の 10 を返します。このフィールドは、TEXT_DETECTION
、DOCUMENT_TEXT_DETECTION
、CROP_HINTS
の各機能タイプには適用されません。
HTTP メソッドと URL:
POST https://vision.googleapis.com/v1/images:annotate
JSON 本文のリクエスト:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "maxResults": RESULTS_INT, "type": "OBJECT_LOCALIZATION" }, ] } ] }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
リクエストが成功すると、サーバーは 200 OK
HTTP ステータス コードと JSON 形式のレスポンスを返します。
レスポンス:
Go
このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Go の設定手順を行ってください。詳細については、Vision Go API のリファレンス ドキュメントをご覧ください。
Java
このサンプルを試す前に、Vision API クイックスタート: クライアント ライブラリの使用の Java の設定手順を行ってください。詳細については、Vision API Java API のリファレンス ドキュメントをご覧ください。
Node.js
このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を行ってください。詳細については、Vision Node.js API のリファレンス ドキュメントをご覧ください。
Python
このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Python の設定手順を行ってください。詳細については、Vision Python API のリファレンス ドキュメントをご覧ください。
その他の言語
C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の Vision リファレンス ドキュメントをご覧ください。
PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の Vision リファレンス ドキュメントをご覧ください。
Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の Vision リファレンス ドキュメントをご覧ください。
リモート画像内のオブジェクトの検出
Vision API は、Google Cloud Storage またはウェブに存在する画像ファイルに対して直接特徴検出を実行できるようになっています。その画像ファイルの内容をリクエストの本文に入れて送信する必要はありません。
REST とコマンドライン
リクエストのデータを使用する前に、次のように置き換えます。
- CLOUD_STORAGE_IMAGE_URI: Cloud Storage バケット内の有効な画像ファイルへのパス。少なくとも、ファイルに対する読み取り権限が必要です。たとえば次のように指定します。
https://cloud.google.com/vision/docs/images/bicycle_example.png
- RESULTS_INT:(省略可)返される結果の整数値。
"maxResults"
フィールドとその値を省略した場合、API はデフォルト値の 10 を返します。このフィールドは、TEXT_DETECTION
、DOCUMENT_TEXT_DETECTION
、CROP_HINTS
の各機能タイプには適用されません。
HTTP メソッドと URL:
POST https://vision.googleapis.com/v1/images:annotate
JSON 本文のリクエスト:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "maxResults": RESULTS_INT, "type": "OBJECT_LOCALIZATION" }, ] } ] }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
リクエストが成功すると、サーバーは 200 OK
HTTP ステータス コードと JSON 形式のレスポンスを返します。
レスポンス:
Go
このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Go の設定手順を行ってください。詳細については、Vision Go API のリファレンス ドキュメントをご覧ください。
Java
このサンプルを試す前に、Vision API クイックスタート: クライアント ライブラリの使用の Java の設定手順を行ってください。詳細については、Vision API Java API のリファレンス ドキュメントをご覧ください。
Node.js
このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を行ってください。詳細については、Vision Node.js API のリファレンス ドキュメントをご覧ください。
Python
このサンプルを試す前に、Vision クイックスタート: クライアント ライブラリの使用にある Python の設定手順を行ってください。詳細については、Vision Python API のリファレンス ドキュメントをご覧ください。
gcloud
画像内のラベルを検出するには、次の例で示すように gcloud ml vision detect-objects
コマンドを実行します。
gcloud ml vision detect-objects https://cloud.google.com/vision/docs/images/bicycle_example.png
その他の言語
C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の Vision リファレンス ドキュメントをご覧ください。
PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の Vision リファレンス ドキュメントをご覧ください。
Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の Vision リファレンス ドキュメントをご覧ください。
試してみる
以下のオブジェクト検出とローカライズをお試しください。すでに指定済みの画像(https://cloud.google.com/vision/docs/images/bicycle_example.png
)を使用することも、独自の画像を指定することもできます。[実行] を選択してリクエストを送信します。

リクエストの本文:
{ "requests": [ { "features": [ { "maxResults": 10, "type": "OBJECT_LOCALIZATION" } ], "image": { "source": { "imageUri": "https://cloud.google.com/vision/docs/images/bicycle_example.png" } } } ] }