Détecter des thèmes

L'API Cloud Vision peut détecter et extraire des informations sur les entités d'une image, dans un large groupe de catégories.

Les libellés permettent d'identifier d'une manière générale des objets, des lieux, des activités, des espèces animales, des produits, etc. Si vous avez besoin de libellés personnalisés ciblés, Cloud AutoML Vision vous permet d'entraîner un modèle de machine learning personnalisé pour classifier des images.

Les libellés ne sont renvoyés qu'en anglais. L'API Cloud Translation peut traduire les libellés en anglais dans plusieurs autres langues.

Image de la rue Ward du quartier Setagaya
Crédit image :Alex Knight sur Unsplash.

Par exemple, l'image ci-dessus peut correspondre à la liste de libellés suivante :

Description Note
Rue 0.872
Snapshot 0.852
Ville 0.848
Nuit 0.804
Allée 0.713

Requêtes de détection de libellés

Configurer votre authentification et votre projet GCP

Détecter les libellés dans une image locale

L'API Vision peut détecter des caractéristiques dans un fichier image local en envoyant le contenu du fichier image en tant que chaîne encodée en base64 dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • base64-encoded-image : représentation en base64 (chaîne ASCII) de vos données d'image binaires. Cette chaîne doit ressembler à la chaîne suivante :
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Consultez la section encodage en base64 pour plus d'informations.

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "maxResults": 5,
          "type": "LABEL_DETECTION"
        }
      ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Une réponse LABEL_DETECTION inclut les libellés détectés, leur score, leur thématique et un ID de libellé opaque, où :

  • mid, s'il est présent, contient un identifiant généré automatiquement correspondant à l'entrée de l'entité sur Google Knowledge Graph. Notez que les valeurs mid restent uniques dans les différents langages. Vous pouvez donc les utiliser pour associer des entités dans différents langages. Pour inspecter ces valeurs mid, consultez la documentation de l'API Google Knowledge Graph.
  • description : description du libellé.
  • score : score de confiance, qui varie de 0 (niveau de confiance nul) à 1 (niveau de confiance très élevé).
  • topicality : pertinence du libellé ICA (Image Content Annotation) par rapport à l'image. Cette valeur permet de mesurer l'importance d'un libellé par rapport au contexte global d'une page.


 {
 "responses": [
 {
 "labelAnnotations": [
 {
 "mid": "/m/01c8br",
 "description": "
 Street",
 "score": 0,87294734,
 "topicity": 0,87294734
 },
 {
 "mid": "/m/06pg22",
"description": "Snapshot",
 "score": 0.85209,
 "topicity": 0,85209
 },
 {
 "mid": "/m/0dx1j",
 "description": "Town",
 "score": 0.848104,
 "topicity": 0,848104
 },
 {
 "mid": "/m/01d74z",
 "description" ": "Nuit",
 "score": 0.08408716,
"topicity": 0,80.0408716
 },
 {
 "mid": "/m/01lwf0",
 " description": "Alley",
 "score": 0.713332,
 "topicity": 0.713332
 }
 ]
 }
 ]
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabels(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No labels found.")
	} else {
		fmt.Fprintln(w, "Labels:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLabels {

  public static void detectLabels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectLabels(filePath);
  }

  // Detects labels in the specified local image.
  public static void detectLabels(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LABEL_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
          annotation
              .getAllFields()
              .forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
        }
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs label detection on the local file
const [result] = await client.labelDetection(fileName);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def detect_labels(path):
    """Detects labels in the file."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.label_detection(image=image)
    labels = response.label_annotations
    print('Labels:')

    for label in labels:
        print(label.description)

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Vision pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Vision pour PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Vision pour Ruby.

Détecter les libellés dans une image distante

Pour plus de facilité, l'API Vision peut directement détecter des caractéristiques dans un fichier image situé dans Google Cloud Storage ou sur le Web sans envoyer le contenu du fichier image dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • cloud-storage-image-uri : chemin d'accès à un fichier image valide dans un bucket Cloud Storage. Il faut au minimum disposer des droits en lecture sur le fichier. Exemple :
    • gs://cloud-samples-data/vision/label/setagaya.jpeg

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "maxResults": 5,
          "type": "LABEL_DETECTION"
        },
      ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Une réponse LABEL_DETECTION inclut les libellés détectés, leur score, leur thématique et un ID de libellé opaque, où :

  • mid, s'il est présent, contient un identifiant généré automatiquement correspondant à l'entrée de l'entité sur Google Knowledge Graph. Notez que les valeurs mid restent uniques dans les différents langages. Vous pouvez donc les utiliser pour associer des entités dans différents langages. Pour inspecter ces valeurs mid, consultez la documentation de l'API Google Knowledge Graph.
  • description : description du libellé.
  • score : score de confiance, qui varie de 0 (niveau de confiance nul) à 1 (niveau de confiance très élevé).
  • topicality : pertinence du libellé ICA (Image Content Annotation) par rapport à l'image. Cette valeur permet de mesurer l'importance d'un libellé par rapport au contexte global d'une page.


 {
 "responses": [
 {
 "labelAnnotations": [
 {
 "mid": "/m/01c8br",
 "description": "
 Street",
 "score": 0,87294734,
 "topicity": 0,87294734
 },
 {
 "mid": "/m/06pg22",
"description": "Snapshot",
 "score": 0.85209,
 "topicity": 0,85209
 },
 {
 "mid": "/m/0dx1j",
 "description": "Town",
 "score": 0.848104,
 "topicity": 0,848104
 },
 {
 "mid": "/m/01d74z",
 "description" ": "Nuit",
 "score": 0.08408716,
"topicity": 0,80.0408716
 },
 {
 "mid": "/m/01lwf0",
 " description": "Alley",
 "score": 0.713332,
 "topicity": 0.713332
 }
 ]
 }
 ]
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabelsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No labels found.")
	} else {
		fmt.Fprintln(w, "Labels:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLabelsGcs {

  public static void detectLabelsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectLabelsGcs(filePath);
  }

  // Detects labels in the specified remote image on Google Cloud Storage.
  public static void detectLabelsGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LABEL_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
          annotation
              .getAllFields()
              .forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
        }
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs label detection on the gcs file
const [result] = await client.labelDetection(
  `gs://${bucketName}/${fileName}`
);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def detect_labels_uri(uri):
    """Detects labels in the file located in Google Cloud Storage or on the
    Web."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.label_detection(image=image)
    labels = response.label_annotations
    print('Labels:')

    for label in labels:
        print(label.description)

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

gcloud

Pour détecter les libellés dans une image, utilisez la commande gcloud ml vision detect-labels comme indiqué dans l'exemple suivant :

gcloud ml vision detect-labels gs://cloud-samples-data/vision/label/setagaya.jpeg

Langues supplémentaires

C# : Veuillez suivre les Instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Vision pour .NET.

PHP : Veuillez suivre les Instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Vision pour PHP.

Ruby : Veuillez suivre les Instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la Documentation de référence sur Vision pour Ruby.

Essayer

Essayez la détection des libellés ci-dessous. Vous pouvez utiliser l'image déjà spécifiée gs://cloud-samples-data/vision/label/setagaya.jpeg ou spécifier votre propre image à la place. Pour envoyer la requête, cliquez sur Exécuter.

Image de la rue Ward du quartier Setagaya
Crédit image :Alex Knight sur Unsplash.

Corps de la requête :

{
  "requests": [
    {
      "features": [
        {
          "maxResults": 5,
          "type": "LABEL_DETECTION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "gs://cloud-samples-data/vision/label/setagaya.jpeg"
        }
      }
    }
  ]
}