Cette page a été traduite par l'API Cloud Translation.
Switch to English

Démarrage rapide : Utiliser des bibliothèques

Cette page explique comment utiliser l'API Vision dans votre langage de programmation favori.

Avant de commencer

  1. Connectez-vous à votre compte Google Cloud. Si vous débutez sur Google Cloud, créez un compte pour évaluer les performances de nos produits en conditions réelles. Les nouveaux clients bénéficient également de 300 $ de crédits gratuits pour exécuter, tester et déployer des charges de travail.
  2. Dans Google Cloud Console, sur la page de sélection du projet, sélectionnez ou créez un projet Google Cloud.

    Accéder au sélecteur de projet

  3. Assurez-vous que la facturation est activée pour votre projet Cloud. Découvrez comment vérifier que la facturation est activée pour votre projet.

  4. Activez Vision API.

    Activer l'API

  5. Créez un compte de service :

    1. Dans Cloud Console, accédez à la page Créer un compte de service.

      Accéder à la page "Créer un compte de service"
    2. Sélectionnez un projet.
    3. Dans le champ Nom du compte de service, saisissez un nom. Cloud Console remplit le champ ID du compte de service en fonction de ce nom.

      Dans le champ Description du compte de service, saisissez une description. Exemple : Service account for quickstart.

    4. Cliquez sur Create (Créer).
    5. Cliquez sur le champ Sélectionner un rôle.

      Dans la section Accès rapide, cliquez sur Basique, puis sur Propriétaire.

    6. Cliquez sur Continuer.
    7. Cliquez sur OK pour terminer la création du compte de service.

      Ne fermez pas la fenêtre de votre navigateur. Vous en aurez besoin lors de la tâche suivante.

  6. Créez une clé de compte de service :

    1. Dans Cloud Console, cliquez sur l'adresse e-mail du compte de service que vous avez créé.
    2. Cliquez sur Clés.
    3. Cliquez sur Ajouter une clé, puis sur Créer une clé.
    4. Cliquez sur Create (Créer). Un fichier de clé JSON est téléchargé sur votre ordinateur.
    5. Cliquez sur Close (Fermer).
  7. Définissez la variable d'environnement GOOGLE_APPLICATION_CREDENTIALS pour qu'elle pointe vers le chemin du fichier JSON contenant la clé de votre compte de service. Cette variable ne s'applique qu'à la session de shell actuelle. Par conséquent, si vous ouvrez une nouvelle session, vous devez de nouveau la définir.

Installer la bibliothèque cliente

Go

go get -u cloud.google.com/go/vision/apiv1

Java

Pour savoir comment configurer votre environnement de développement Java, consultez le guide de configuration d'un environnement de développement Java.

Si vous utilisez Maven, ajoutez les lignes suivantes à votre fichier pom.xml. Pour en savoir plus sur les BOM, consultez la page The Google Cloud Platform Libraries BOM (BOM des bibliothèques Google Cloud Platform).

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>20.3.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-vision</artifactId>
  </dependency>
</dependencies>

Si vous utilisez Gradle, ajoutez les éléments suivants à vos dépendances :

implementation platform('com.google.cloud:libraries-bom:20.2.0')

compile 'com.google.cloud:google-cloud-vision'

Si vous utilisez sbt, ajoutez les éléments suivants à vos dépendances :

libraryDependencies += "com.google.cloud" % "google-cloud-vision" % "1.102.2"

Si vous utilisez IntelliJ ou Eclipse, vous pouvez ajouter des bibliothèques clientes à votre projet à l'aide des plug-ins IDE suivants :

Les plug-ins offrent des fonctionnalités supplémentaires, telles que la gestion des clés pour les comptes de service. Reportez-vous à la documentation de chaque plug-in pour plus de détails.

Node.js

Pour savoir comment configurer votre environnement de développement Node.js, consultez le guide de configuration d'un environnement de développement Node.js.

npm install --save @google-cloud/vision

Python

Pour savoir comment configurer votre environnement de développement Python, consultez le guide de configuration d'un environnement de développement Python.

pip install --upgrade google-cloud-vision

Détection de thèmes

Vous pouvez maintenant utiliser l'API Vision pour demander des informations sur une image, comme par exemple avec la détection de thèmes. Exécutez le code suivant pour effectuer votre première demande de détection de thèmes sur une image :

Les exemples de code utilisent une ressource d'image disponible dans le dépôt GitHub associé (wakeupcat.jpg). Obtenez l'image en clonant le dépôt, en l'enregistrant manuellement ou en exécutant la commande suivante :

wget https://raw.githubusercontent.com/googleapis/python-vision/master/samples/snippets/quickstart/resources/wakeupcat.jpg

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// Sample vision-quickstart uses the Google Cloud Vision API to label an image.
package main

import (
	"context"
	"fmt"
	"log"
	"os"

	vision "cloud.google.com/go/vision/apiv1"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	// Sets the name of the image file to annotate.
	filename := "../testdata/cat.jpg"

	file, err := os.Open(filename)
	if err != nil {
		log.Fatalf("Failed to read file: %v", err)
	}
	defer file.Close()
	image, err := vision.NewImageFromReader(file)
	if err != nil {
		log.Fatalf("Failed to create image: %v", err)
	}

	labels, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		log.Fatalf("Failed to detect labels: %v", err)
	}

	fmt.Println("Labels:")
	for _, label := range labels {
		fmt.Println(label.Description)
	}
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.

// Imports the Google Cloud client library

import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

public class QuickstartSample {
  public static void main(String... args) throws Exception {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient vision = ImageAnnotatorClient.create()) {

      // The path to the image file to annotate
      String fileName = "./resources/wakeupcat.jpg";

      // Reads the image file into memory
      Path path = Paths.get(fileName);
      byte[] data = Files.readAllBytes(path);
      ByteString imgBytes = ByteString.copyFrom(data);

      // Builds the image annotation request
      List<AnnotateImageRequest> requests = new ArrayList<>();
      Image img = Image.newBuilder().setContent(imgBytes).build();
      Feature feat = Feature.newBuilder().setType(Type.LABEL_DETECTION).build();
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
      requests.add(request);

      // Performs label detection on the image file
      BatchAnnotateImagesResponse response = vision.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
          annotation
              .getAllFields()
              .forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
        }
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

async function quickstart() {
  // Imports the Google Cloud client library
  const vision = require('@google-cloud/vision');

  // Creates a client
  const client = new vision.ImageAnnotatorClient();

  // Performs label detection on the image file
  const [result] = await client.labelDetection('./resources/wakeupcat.jpg');
  const labels = result.labelAnnotations;
  console.log('Labels:');
  labels.forEach(label => console.log(label.description));
}
quickstart();

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

import io
import os

# Imports the Google Cloud client library
from google.cloud import vision

# Instantiates a client
client = vision.ImageAnnotatorClient()

# The name of the image file to annotate
file_name = os.path.abspath('resources/wakeupcat.jpg')

# Loads the image into memory
with io.open(file_name, 'rb') as image_file:
    content = image_file.read()

image = vision.Image(content=content)

# Performs label detection on the image file
response = client.label_detection(image=image)
labels = response.label_annotations

print('Labels:')
for label in labels:
    print(label.description)

Félicitations ! Vous avez envoyé votre première requête à l'API Vision.

Comment ça s'est passé ?

Effectuer un nettoyage

Afin d'éviter que des frais ne soient facturés sur votre compte Google pour les ressources utilisées dans ce guide de démarrage rapide, procédez comme suit :

  • Utilisez Cloud Console pour supprimer votre projet, si vous n'en avez plus besoin.

Étape suivante

Obtenez davantage d'informations sur les bibliothèques clientes de l'API Cloud Vision.