Diese Seite wurde von der Cloud Translation API übersetzt.
Switch to English

Kurzanleitung: Clientbibliotheken verwenden

Auf dieser Seite werden die ersten Schritte mit der Video Intelligence API in Ihrer bevorzugten Programmiersprache erläutert.

Hinweis

  1. Melden Sie sich bei Ihrem Google-Konto an.

    Wenn Sie noch kein Konto haben, melden Sie sich hier für ein neues Konto an.

  2. Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.

    Zur Projektauswahl

  3. Die Abrechnung für das Cloud-Projekt muss aktiviert sein. So prüfen Sie, ob die Abrechnung für Ihr Projekt aktiviert ist.

  4. Aktivieren Sie die Video Intelligence API.

    Aktivieren Sie die API

  5. Authentifizierung einrichten:
    1. Wechseln Sie in der Cloud Console zur Seite Dienstkontoschlüssel erstellen.

      Zur Seite „Dienstkontoschlüssel erstellen“
    2. Wählen Sie aus der Liste Dienstkonto die Option Neues Dienstkonto aus.
    3. Geben Sie im Feld Dienstkontoname einen Namen ein.
    4. Wählen Sie in der Liste Rolle die Option Projekt > Inhaber

    5. Klicken Sie auf Erstellen. Eine JSON-Datei mit Ihrem Schlüssel wird auf Ihren Computer heruntergeladen.
  6. Legen Sie für die Umgebungsvariable GOOGLE_APPLICATION_CREDENTIALS den Pfad der JSON-Datei fest, die Ihren Dienstkontoschlüssel enthält. Diese Variable gilt nur für Ihre aktuelle Shellsitzung. Wenn Sie eine neue Sitzung öffnen, müssen Sie die Variable noch einmal festlegen.

Clientbibliothek installieren

C#

Weitere Informationen zur Einrichtung der C#-Entwicklungsumgebung finden Sie im Einrichtungsleitfaden für die C#-Entwicklungsumgebung.

Install-Package Google.Cloud.VideoIntelligence.V1 -Pre

Go

go get -u cloud.google.com/go/videointelligence/apiv1

Java

Weitere Informationen zur Einrichtung der Java-Entwicklungsumgebung finden Sie im Einrichtungsleitfaden für die Java-Entwicklungsumgebung.

Wenn Sie Maven verwenden, fügen Sie Ihrer Datei pom.xml den folgenden Code hinzu. Weitere Informationen zu BOMs finden Sie unter The Google Cloud Platform Libraries BOM.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>16.1.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-video-intelligence</artifactId>
  </dependency>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-storage</artifactId>
  </dependency>

Wenn Sie Gradle verwenden, fügen Sie den Abhängigkeiten Folgendes hinzu:

compile 'com.google.cloud:google-cloud-video-intelligence:1.5.6'

Wenn Sie sbt nutzen, fügen Sie den Abhängigkeiten Folgendes hinzu:

libraryDependencies += "com.google.cloud" % "google-cloud-video-intelligence" % "1.5.6"

Bei Verwendung von IntelliJ oder Eclipse können Sie Ihrem Projekt mithilfe der folgenden IDE-Plug-ins Clientbibliotheken hinzufügen:

Diese Plug-ins bieten zusätzliche Funktionen wie die Schlüsselverwaltung für Dienstkonten. Einzelheiten finden Sie in der Dokumentation der einzelnen Plug-ins.

Node.js

Weitere Informationen zur Einrichtung der Node.js-Entwicklungsumgebung finden Sie im Einrichtungsleitfaden für die Node.js-Entwicklungsumgebung.

npm install --save @google-cloud/video-intelligence

PHP

composer require google/cloud-videointelligence

Python

Weitere Informationen zur Einrichtung der Python-Entwicklungsumgebung finden Sie im Einrichtungsleitfaden für die Python-Entwicklungsumgebung.

pip install --upgrade google-cloud-videointelligence

Ruby

Weitere Informationen zur Einrichtung der Ruby-Entwicklungsumgebung finden Sie im Einrichtungsleitfaden für die Ruby-Entwicklungsumgebung.

gem install google-cloud-video_intelligence

Labelerkennung

Sie können jetzt die Video Intelligence API verwenden, um Informationen von einem Video oder Videosegment anzufordern, z. B. zur Labelerkennung. Führen Sie den folgenden Code aus, um Ihre erste Anfrage zur Videolabelerkennung durchzuführen.

C#


using Google.Cloud.VideoIntelligence.V1;
using System;

namespace GoogleCloudSamples.VideoIntelligence
{
    public class QuickStart
    {
        public static void Main(string[] args)
        {
            var client = VideoIntelligenceServiceClient.Create();
            var request = new AnnotateVideoRequest()
            {
                InputUri = @"gs://cloud-samples-data/video/cat.mp4",
                Features = { Feature.LabelDetection }
            };
            var op = client.AnnotateVideo(request).PollUntilCompleted();
            foreach (var result in op.Result.AnnotationResults)
            {
                foreach (var annotation in result.SegmentLabelAnnotations)
                {
                    Console.WriteLine($"Video label: {annotation.Entity.Description}");
                    foreach (var entity in annotation.CategoryEntities)
                    {
                        Console.WriteLine($"Video label category: {entity.Description}");
                    }
                    foreach (var segment in annotation.Segments)
                    {
                        Console.Write("Segment location: ");
                        Console.Write(segment.Segment.StartTimeOffset);
                        Console.Write(":");
                        Console.WriteLine(segment.Segment.EndTimeOffset);
                        System.Console.WriteLine($"Confidence: {segment.Confidence}");
                    }
                }
            }
        }
    }
}

Go


// Sample video_quickstart uses the Google Cloud Video Intelligence API to label a video.
package main

import (
	"context"
	"fmt"
	"log"

	"github.com/golang/protobuf/ptypes"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "google.golang.org/genproto/googleapis/cloud/videointelligence/v1"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: "gs://cloud-samples-data/video/cat.mp4",
		Features: []videopb.Feature{
			videopb.Feature_LABEL_DETECTION,
		},
	})
	if err != nil {
		log.Fatalf("Failed to start annotation job: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		log.Fatalf("Failed to annotate: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.SegmentLabelAnnotations {
		fmt.Printf("Description: %s\n", annotation.Entity.Description)

		for _, category := range annotation.CategoryEntities {
			fmt.Printf("\tCategory: %s\n", category.Description)
		}

		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.Segment.StartTimeOffset)
			end, _ := ptypes.Duration(segment.Segment.EndTimeOffset)
			fmt.Printf("\tSegment: %s to %s\n", start, end)
			fmt.Printf("\tConfidence: %v\n", segment.Confidence)
		}
	}
}

Java


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LabelAnnotation;
import com.google.cloud.videointelligence.v1.LabelSegment;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import java.util.List;

public class QuickstartSample {

  /** Demonstrates using the video intelligence client to detect labels in a video file. */
  public static void main(String[] args) throws Exception {
    // Instantiate a video intelligence client
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // The Google Cloud Storage path to the video to annotate.
      String gcsUri = "gs://cloud-samples-data/video/cat.mp4";

      // Create an operation that will contain the response when the operation completes.
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.LABEL_DETECTION)
              .build();

      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");

      List<VideoAnnotationResults> results = response.get().getAnnotationResultsList();
      if (results.isEmpty()) {
        System.out.println("No labels detected in " + gcsUri);
        return;
      }
      for (VideoAnnotationResults result : results) {
        System.out.println("Labels:");
        // get video segment label annotations
        for (LabelAnnotation annotation : result.getSegmentLabelAnnotationsList()) {
          System.out.println(
              "Video label description : " + annotation.getEntity().getDescription());
          // categories
          for (Entity categoryEntity : annotation.getCategoryEntitiesList()) {
            System.out.println("Label Category description : " + categoryEntity.getDescription());
          }
          // segments
          for (LabelSegment segment : annotation.getSegmentsList()) {
            double startTime =
                segment.getSegment().getStartTimeOffset().getSeconds()
                    + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
            double endTime =
                segment.getSegment().getEndTimeOffset().getSeconds()
                    + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
            System.out.printf("Segment location : %.3f:%.3f\n", startTime, endTime);
            System.out.println("Confidence : " + segment.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

// Imports the Google Cloud Video Intelligence library
const videoIntelligence = require('@google-cloud/video-intelligence');

// Creates a client
const client = new videoIntelligence.VideoIntelligenceServiceClient();

// The GCS uri of the video to analyze
const gcsUri = 'gs://cloud-samples-data/video/cat.mp4';

// Construct request
const request = {
  inputUri: gcsUri,
  features: ['LABEL_DETECTION'],
};

// Execute request
const [operation] = await client.annotateVideo(request);

console.log(
  'Waiting for operation to complete... (this may take a few minutes)'
);

const [operationResult] = await operation.promise();

// Gets annotations for video
const annotations = operationResult.annotationResults[0];

// Gets labels for video from its annotations
const labels = annotations.segmentLabelAnnotations;
labels.forEach(label => {
  console.log(`Label ${label.entity.description} occurs at:`);
  label.segments.forEach(segment => {
    segment = segment.segment;
    if (segment.startTimeOffset.seconds === undefined) {
      segment.startTimeOffset.seconds = 0;
    }
    if (segment.startTimeOffset.nanos === undefined) {
      segment.startTimeOffset.nanos = 0;
    }
    if (segment.endTimeOffset.seconds === undefined) {
      segment.endTimeOffset.seconds = 0;
    }
    if (segment.endTimeOffset.nanos === undefined) {
      segment.endTimeOffset.nanos = 0;
    }
    console.log(
      `\tStart: ${segment.startTimeOffset.seconds}` +
        `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${segment.endTimeOffset.seconds}.` +
        `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
  });
});

PHP

use Google\Cloud\VideoIntelligence\V1\VideoIntelligenceServiceClient;
use Google\Cloud\VideoIntelligence\V1\Feature;

# Instantiate a client.
$video = new VideoIntelligenceServiceClient();

# Execute a request.
$options = [
    'inputUri' => 'gs://cloud-samples-data/video/cat.mp4',
    'features' => [Feature::LABEL_DETECTION]
];
$operation = $video->annotateVideo($options);

# Wait for the request to complete.
$operation->pollUntilComplete();

# Print the result.
if ($operation->operationSucceeded()) {
    $results = $operation->getResult()->getAnnotationResults()[0];
    # Process video/segment level label annotations
    foreach ($results->getSegmentLabelAnnotations() as $label) {
        printf('Video label description: %s' . PHP_EOL, $label->getEntity()->getDescription());
        foreach ($label->getCategoryEntities() as $categoryEntity) {
            printf('  Category: %s' . PHP_EOL, $categoryEntity->getDescription());
        }
        foreach ($label->getSegments() as $segment) {
            $start = $segment->getSegment()->getStartTimeOffset();
            $end = $segment->getSegment()->getEndTimeOffset();
            printf('  Segment: %ss to %ss' . PHP_EOL,
                $start->getSeconds() + $start->getNanos()/1000000000.0,
                $end->getSeconds() + $end->getNanos()/1000000000.0
            );
            printf('  Confidence: %f' . PHP_EOL, $segment->getConfidence());
        }
    }
} else {
    print_r($operation->getError());
}

Python

from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(
    request={
        "features": features,
        "input_uri": "gs://cloud-samples-data/video/cat.mp4",
    }
)
print("\nProcessing video for label annotations:")

result = operation.result(timeout=120)
print("\nFinished processing.")

# first result is retrieved because a single video was processed
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
    print("Video label description: {}".format(segment_label.entity.description))
    for category_entity in segment_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, segment in enumerate(segment_label.segments):
        start_time = (
            segment.segment.start_time_offset.seconds
            + segment.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            segment.segment.end_time_offset.seconds
            + segment.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = segment.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

Ruby

require "google/cloud/video_intelligence"

video_client = Google::Cloud::VideoIntelligence.video_intelligence_service
features     = [:LABEL_DETECTION]
path         = "gs://cloud-samples-data/video/cat.mp4"

# Register a callback during the method call
operation = video_client.annotate_video features: features, input_uri: path

puts "Processing video for label annotations:"
operation.wait_until_done!

raise operation.results.message? if operation.error?
puts "Finished Processing."

labels = operation.results.annotation_results.first.segment_label_annotations

labels.each do |label|
  puts "Label description: #{label.entity.description}"

  label.category_entities.each do |category_entity|
    puts "Label category description: #{category_entity.description}"
  end

  label.segments.each do |segment|
    start_time = (segment.segment.start_time_offset.seconds +
                   segment.segment.start_time_offset.nanos / 1e9)
    end_time =   (segment.segment.end_time_offset.seconds +
                   segment.segment.end_time_offset.nanos / 1e9)

    puts "Segment: #{start_time} to #{end_time}"
    puts "Confidence: #{segment.confidence}"
  end
end

Das wars! Sie haben Ihre erste Anfrage an die Video Intelligence API gesendet.

Wie ist es gelaufen?

Bereinigen

So vermeiden Sie, dass Ihrem Google-Konto die in dieser Kurzanleitung verwendeten Ressourcen in Rechnung gestellt werden:

  • Löschen Sie das Projekt mit der Cloud Console, wenn Sie es nicht benötigen.

Nächste Schritte

Weitere Informationen zu Video Intelligence API-Clientbibliotheken.