Explicit content

Explicit Content Detection detects adult content within a video. Adult content is content generally inappropriate for those under under 18 years of age, including but is not limited to, nudity, sexual activities, and pornography. Such content detected in cartoons or anime is also identified..

The following code sample demonstrates how to detect the presence of explicit content using the streaming client library.

Java

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.api.gax.rpc.BidiStream;
import com.google.cloud.videointelligence.v1p3beta1.ExplicitContentFrame;
import com.google.cloud.videointelligence.v1p3beta1.StreamingAnnotateVideoRequest;
import com.google.cloud.videointelligence.v1p3beta1.StreamingAnnotateVideoResponse;
import com.google.cloud.videointelligence.v1p3beta1.StreamingFeature;
import com.google.cloud.videointelligence.v1p3beta1.StreamingLabelDetectionConfig;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoAnnotationResults;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoConfig;
import com.google.cloud.videointelligence.v1p3beta1.StreamingVideoIntelligenceServiceClient;
import com.google.protobuf.ByteString;
import io.grpc.StatusRuntimeException;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Arrays;
import java.util.concurrent.TimeoutException;

class StreamingExplicitContentDetection {

  // Perform streaming video detection for explicit content
  static void streamingExplicitContentDetection(String filePath)
      throws IOException, TimeoutException, StatusRuntimeException {
    // String filePath = "path_to_your_video_file";

    try (StreamingVideoIntelligenceServiceClient client =
        StreamingVideoIntelligenceServiceClient.create()) {

      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      // Set the chunk size to 5MB (recommended less than 10MB).
      int chunkSize = 5 * 1024 * 1024;
      int numChunks = (int) Math.ceil((double) data.length / chunkSize);

      StreamingLabelDetectionConfig labelConfig =
          StreamingLabelDetectionConfig.newBuilder().setStationaryCamera(false).build();

      StreamingVideoConfig streamingVideoConfig =
          StreamingVideoConfig.newBuilder()
              .setFeature(StreamingFeature.STREAMING_EXPLICIT_CONTENT_DETECTION)
              .setLabelDetectionConfig(labelConfig)
              .build();

      BidiStream<StreamingAnnotateVideoRequest, StreamingAnnotateVideoResponse> call =
          client.streamingAnnotateVideoCallable().call();

      // The first request must **only** contain the audio configuration:
      call.send(
          StreamingAnnotateVideoRequest.newBuilder().setVideoConfig(streamingVideoConfig).build());

      // Subsequent requests must **only** contain the audio data.
      // Send the requests in chunks
      for (int i = 0; i < numChunks; i++) {
        call.send(
            StreamingAnnotateVideoRequest.newBuilder()
                .setInputContent(
                    ByteString.copyFrom(
                        Arrays.copyOfRange(data, i * chunkSize, i * chunkSize + chunkSize)))
                .build());
      }

      // Tell the service you are done sending data
      call.closeSend();

      for (StreamingAnnotateVideoResponse response : call) {
        StreamingVideoAnnotationResults annotationResults = response.getAnnotationResults();

        for (ExplicitContentFrame frame :
            annotationResults.getExplicitAnnotation().getFramesList()) {

          double offset =
              frame.getTimeOffset().getSeconds() + frame.getTimeOffset().getNanos() / 1e9;

          System.out.format("Offset: %f\n", offset);
          System.out.format("\tPornography: %s", frame.getPornographyLikelihood());
        }
      }
    }
  }
}

Node.js

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';
const {StreamingVideoIntelligenceServiceClient} =
  require('@google-cloud/video-intelligence').v1p3beta1;
const fs = require('fs');

// Instantiates a client
const client = new StreamingVideoIntelligenceServiceClient();
// Streaming configuration
const configRequest = {
  videoConfig: {
    feature: 'STREAMING_EXPLICIT_CONTENT_DETECTION',
  },
};

const readStream = fs.createReadStream(path, {
  highWaterMark: 5 * 1024 * 1024, //chunk size set to 5MB (recommended less than 10MB)
  encoding: 'base64',
});
//Load file content
const chunks = [];
readStream
  .on('data', chunk => {
    const request = {
      inputContent: chunk.toString(),
    };
    chunks.push(request);
  })
  .on('close', () => {
    // configRequest should be the first in the stream of requests
    stream.write(configRequest);
    for (let i = 0; i < chunks.length; i++) {
      stream.write(chunks[i]);
    }
    stream.end();
  });

const stream = client.streamingAnnotateVideo().on('data', response => {
  //Gets annotations for video
  const annotations = response.annotationResults;
  const explicitContentResults = annotations.explicitAnnotation.frames;
  explicitContentResults.forEach(result => {
    console.log(
      `Time: ${result.timeOffset.seconds || 0}` +
        `.${(result.timeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(` Pornography likelihood: ${result.pornographyLikelihood}`);
  });
});

Python

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google.cloud import videointelligence_v1p3beta1 as videointelligence

# path = 'path_to_file'

client = videointelligence.StreamingVideoIntelligenceServiceClient()

# Set streaming config.
config = videointelligence.StreamingVideoConfig(
    feature=(
        videointelligence.StreamingFeature.STREAMING_EXPLICIT_CONTENT_DETECTION
    )
)

# config_request should be the first in the stream of requests.
config_request = videointelligence.StreamingAnnotateVideoRequest(
    video_config=config
)

# Set the chunk size to 5MB (recommended less than 10MB).
chunk_size = 5 * 1024 * 1024

# Load file content.
stream = []
with io.open(path, "rb") as video_file:
    while True:
        data = video_file.read(chunk_size)
        if not data:
            break
        stream.append(data)

def stream_generator():
    yield config_request
    for chunk in stream:
        yield videointelligence.StreamingAnnotateVideoRequest(input_content=chunk)

requests = stream_generator()

# streaming_annotate_video returns a generator.
# The default timeout is about 300 seconds.
# To process longer videos it should be set to
# larger than the length (in seconds) of the stream.
responses = client.streaming_annotate_video(requests, timeout=900)

# Each response corresponds to about 1 second of video.
for response in responses:
    # Check for errors.
    if response.error.message:
        print(response.error.message)
        break

    for frame in response.annotation_results.explicit_annotation.frames:
        time_offset = (
            frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
        )
        pornography_likelihood = videointelligence.Likelihood(
            frame.pornography_likelihood
        )

        print("Time: {}s".format(time_offset))
        print("\tpornogaphy: {}".format(pornography_likelihood.name))