A partir de 29 de abril de 2025, os modelos Gemini 1.5 Pro e Gemini 1.5 Flash não estarão disponíveis em projetos que não os usaram antes, incluindo novos projetos. Para mais detalhes, consulte Versões e ciclo de vida do modelo.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-04 UTC."],[],[],null,["# RAG quickstart for Python\n\n| The [VPC-SC security controls](/vertex-ai/generative-ai/docs/security-controls) and\n| CMEK are supported by Vertex AI RAG Engine. Data residency and AXT security controls aren't\nsupported. \n| To see an example of using RAG Engine,\n| run the \"Intro to RAG Engine in Vertex AI\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/rag-engine/intro_rag_engine.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fgenerative-ai%2Fmain%2Fgemini%2Frag-engine%2Fintro_rag_engine.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fgenerative-ai%2Fmain%2Fgemini%2Frag-engine%2Fintro_rag_engine.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/rag-engine/intro_rag_engine.ipynb)\n\nThis page shows you how to use the Vertex AI SDK to run\nVertex AI RAG Engine tasks.\n\nYou can also follow along using this notebook [Intro to Vertex AI RAG Engine](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/rag-engine/intro_rag_engine.ipynb).\n\nRequired roles\n--------------\n\n\nGrant roles to your user account. Run the following command once for each of the following\nIAM roles:\n`roles/aiplatform.user` \n\n```bash\ngcloud projects add-iam-policy-binding PROJECT_ID --member=\"user:\u003cvar translate=\"no\"\u003eUSER_IDENTIFIER\u003c/var\u003e\" --role=ROLE\n```\n\nReplace the following:\n\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: your project ID.\n- \u003cvar translate=\"no\"\u003eUSER_IDENTIFIER\u003c/var\u003e: the identifier for your user account---for example, `myemail@example.com`.\n- \u003cvar translate=\"no\"\u003eROLE\u003c/var\u003e: the IAM role that you grant to your user account.\n\nPrepare your Google Cloud console\n---------------------------------\n\nTo use Vertex AI RAG Engine, do the following:\n\n1. [Install the Vertex AI SDK for Python](/vertex-ai/docs/start/install-sdk).\n\n2. Run this command in the Google Cloud console to set up your project.\n\n `gcloud config set {project}`\n3. Run this command to authorize your login.\n\n `gcloud auth application-default login`\n\nRun Vertex AI RAG Engine\n------------------------\n\nCopy and paste this sample code into the Google Cloud console to run Vertex AI RAG Engine. \n\n### Python\n\nTo learn how to install or update the Vertex AI SDK for Python, see [Install the Vertex AI SDK for Python](/vertex-ai/docs/start/use-vertex-ai-python-sdk).\n\nFor more information, see the\n[Python API reference documentation](/python/docs/reference/aiplatform/latest).\n\n from vertexai import rag\n from vertexai.generative_models import GenerativeModel, Tool\n import vertexai\n\n # Create a RAG Corpus, Import Files, and Generate a response\n\n # TODO(developer): Update and un-comment below lines\n # PROJECT_ID = \"your-project-id\"\n # display_name = \"test_corpus\"\n # paths = [\"https://drive.google.com/file/d/123\", \"gs://my_bucket/my_files_dir\"] # Supports Google Cloud Storage and Google Drive Links\n\n # Initialize Vertex AI API once per session\n vertexai.init(project=PROJECT_ID, location=\"us-central1\")\n\n # Create RagCorpus\n # Configure embedding model, for example \"text-embedding-005\".\n embedding_model_config = rag.RagEmbeddingModelConfig(\n vertex_prediction_endpoint=rag.VertexPredictionEndpoint(\n publisher_model=\"publishers/google/models/text-embedding-005\"\n )\n )\n\n rag_corpus = rag.create_corpus(\n display_name=display_name,\n backend_config=rag.RagVectorDbConfig(\n rag_embedding_model_config=embedding_model_config\n ),\n )\n\n # Import Files to the RagCorpus\n rag.import_files(\n rag_corpus.name,\n paths,\n # Optional\n transformation_config=rag.TransformationConfig(\n chunking_config=rag.ChunkingConfig(\n chunk_size=512,\n chunk_overlap=100,\n ),\n ),\n max_embedding_requests_per_min=1000, # Optional\n )\n\n # Direct context retrieval\n rag_retrieval_config = rag.RagRetrievalConfig(\n top_k=3, # Optional\n filter=rag.Filter(vector_distance_threshold=0.5), # Optional\n )\n response = rag.retrieval_query(\n rag_resources=[\n rag.RagResource(\n rag_corpus=rag_corpus.name,\n # Optional: supply IDs from `rag.list_files()`.\n # rag_file_ids=[\"rag-file-1\", \"rag-file-2\", ...],\n )\n ],\n text=\"What is RAG and why it is helpful?\",\n rag_retrieval_config=rag_retrieval_config,\n )\n print(response)\n\n # Enhance generation\n # Create a RAG retrieval tool\n rag_retrieval_tool = Tool.from_retrieval(\n retrieval=rag.Retrieval(\n source=rag.VertexRagStore(\n rag_resources=[\n rag.RagResource(\n rag_corpus=rag_corpus.name, # Currently only 1 corpus is allowed.\n # Optional: supply IDs from `rag.list_files()`.\n # rag_file_ids=[\"rag-file-1\", \"rag-file-2\", ...],\n )\n ],\n rag_retrieval_config=rag_retrieval_config,\n ),\n )\n )\n\n # Create a Gemini model instance\n rag_model = GenerativeModel(\n model_name=\"gemini-2.0-flash-001\", tools=[rag_retrieval_tool]\n )\n\n # Generate response\n response = rag_model.generate_content(\"What is RAG and why it is helpful?\")\n print(response.text)\n # Example response:\n # RAG stands for Retrieval-Augmented Generation.\n # It's a technique used in AI to enhance the quality of responses\n # ...\n\n\u003cbr /\u003e\n\nWhat's next\n-----------\n\n- To learn more about the RAG API, see [Vertex AI RAG Engine\n API](/vertex-ai/generative-ai/docs/model-reference/rag-api).\n- To learn more about the responses from RAG, see [Retrieval and Generation Output of Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/model-reference/rag-output-explained).\n- To learn about the Vertex AI RAG Engine, see the [Vertex AI RAG Engine overview](/vertex-ai/generative-ai/docs/rag-overview)."]]