Générer des images d'essai virtuel

L'essai virtuel vous permet de générer des images de personnes pour essayer virtuellement des vêtements. Vous fournissez une image d'une personne et une image d'un vêtement, puis l'essayage virtuel génère une image de la personne portant ce vêtement.

Essayer l'essai virtuel dans Colab

Avant de commencer

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Vertex AI API.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the API

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Vertex AI API.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the API

  8. Configurez l'authentification pour votre environnement.

    Select the tab for how you plan to use the samples on this page:

    Python

    Pour utiliser les exemples Python de cette page dans un environnement de développement local, installez et initialisez la gcloud CLI, puis configurez le service Identifiants par défaut de l'application à l'aide de vos identifiants utilisateur.

      Installez la Google Cloud CLI.

      Si vous utilisez un fournisseur d'identité (IdP) externe, vous devez d'abord vous connecter à la gcloud CLI avec votre identité fédérée.

      If you're using a local shell, then create local authentication credentials for your user account:

      gcloud auth application-default login

      You don't need to do this if you're using Cloud Shell.

      If an authentication error is returned, and you are using an external identity provider (IdP), confirm that you have signed in to the gcloud CLI with your federated identity.

    Pour en savoir plus, consultez la section Configurer les ADC pour un environnement de développement local dans la documentation sur l'authentification Google Cloud .

    REST

    Pour utiliser les exemples API REST de cette page dans un environnement de développement local, vous devez utiliser les identifiants que vous fournissez à la gcloud CLI.

      Installez la Google Cloud CLI.

      Si vous utilisez un fournisseur d'identité (IdP) externe, vous devez d'abord vous connecter à la gcloud CLI avec votre identité fédérée.

    Pour en savoir plus, consultez la section S'authentifier pour utiliser REST dans la documentation sur l'authentification Google Cloud .

    Générer des images

    Python

    Installer

    pip install --upgrade google-genai

    Pour en savoir plus, lisez la documentation de référence du SDK.

    Définissez les variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    from google import genai
    from google.genai.types import RecontextImageSource, ProductImage
    
    client = genai.Client()
    
    # TODO(developer): Update and un-comment below line
    # output_file = "output-image.png"
    
    image = client.models.recontext_image(
        model="virtual-try-on-preview-08-04",
        source=RecontextImageSource(
            person_image=Image.from_file(location="test_resources/man.png"),
            product_images=[
                ProductImage(product_image=Image.from_file(location="test_resources/sweater.jpg"))
            ],
        ),
    )
    
    image.generated_images[0].image.save(output_file)
    
    print(f"Created output image using {len(image.generated_images[0].image.image_bytes)} bytes")
    # Example response:
    # Created output image using 1234567 bytes
    

    REST

    Avant d'utiliser les données de requête, effectuez les remplacements suivants :

    • REGION : région dans laquelle se trouve votre projet. Pour en savoir plus sur les régions compatibles, consultez Emplacements de l'IA générative sur Vertex AI.
    • PROJECT_ID : ID de votre projet Google Cloud .
    • BASE64_PERSON_IMAGE : image de la personne encodée en Base64.
    • BASE64_PRODUCT_IMAGE : image du produit encodée en base64.
    • IMAGE_COUNT : nombre d'images à générer. La plage de valeurs acceptée est comprise entre 1 et 4.
    • GCS_OUTPUT_PATH : chemin d'accès Cloud Storage où stocker le résultat de l'essayage virtuel.

    Méthode HTTP et URL :

    POST https://REGION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/publishers/google/models/virtual-try-on-preview-08-04:predict

    Corps JSON de la requête :

    {
      "instances": [
        {
          "personImage": {
            "image": {
              "bytesBase64Encoded": "BASE64_PERSON_IMAGE"
            }
          },
          "productImages": [
            {
              "image": {
                "bytesBase64Encoded": "BASE64_PRODUCT_IMAGE"
              }
            }
          ]
        }
      ],
      "parameters": {
        "sampleCount": IMAGE_COUNT,
        "storageUri": "GCS_OUTPUT_PATH"
      }
    }
    

    Pour envoyer votre requête, choisissez l'une des options suivantes :

    curl

    Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json; charset=utf-8" \
    -d @request.json \
    "https://REGION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/publishers/google/models/virtual-try-on-preview-08-04:predict"

    PowerShell

    Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

    $cred = gcloud auth print-access-token
    $headers = @{ "Authorization" = "Bearer $cred" }

    Invoke-WebRequest `
    -Method POST `
    -Headers $headers `
    -ContentType: "application/json; charset=utf-8" `
    -InFile request.json `
    -Uri "https://REGION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/publishers/google/models/virtual-try-on-preview-08-04:predict" | Select-Object -Expand Content
    La requête renvoie des objets image. Dans cet exemple, deux objets image sont renvoyés, avec deux objets de prédiction sous forme d'images encodées en base64.
    {
      "predictions": [
        {
          "mimeType": "image/png",
          "bytesBase64Encoded": "BASE64_IMG_BYTES"
        },
        {
          "bytesBase64Encoded": "BASE64_IMG_BYTES",
          "mimeType": "image/png"
        }
      ]
    }