Resumir o conteúdo de um texto usando a IA generativa (IA generativa)
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Resuma o conteúdo de texto usando um modelo de texto do editor.
Exemplo de código
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],[],[],[],null,["Summarize text content using a publisher text model.\n\nCode sample \n\nJava\n\n\nBefore trying this sample, follow the Java setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Java API\nreference documentation](/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.EndpointName.html;\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictResponse.html;\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictionServiceClient.html;\n import com.google.cloud.aiplatform.v1.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictionServiceSettings.html;\n import com.google.protobuf.https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.Value.html;\n import com.google.protobuf.util.https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.util.JsonFormat.html;\n import java.io.IOException;\n import java.util.ArrayList;\n import java.util.List;\n\n // Text Summarization with a Large Language Model\n public class PredictTextSummarizationSample {\n\n public static void main(String[] args) throws IOException {\n // TODO(developer): Replace these variables before running the sample.\n // Designing prompts for text summerization with supported large language models:\n // https://cloud.google.com/vertex-ai/docs/generative-ai/text/summarization-prompts\n String instance =\n \"{ \\\"content\\\": \\\"Background: There is evidence that there have been significant changes \\n\"\n + \"in Amazon rainforest vegetation over the last 21,000 years through the Last \\n\"\n + \"Glacial Maximum (LGM) and subsequent deglaciation. Analyses of sediment \\n\"\n + \"deposits from Amazon basin paleo lakes and from the Amazon Fan indicate that \\n\"\n + \"rainfall in the basin during the LGM was lower than for the present, and this \\n\"\n + \"was almost certainly associated with reduced moist tropical vegetation cover \\n\"\n + \"in the basin. There is debate, however, over how extensive this reduction \\n\"\n + \"was. Some scientists argue that the rainforest was reduced to small, isolated \\n\"\n + \"refugia separated by open forest and grassland; other scientists argue that \\n\"\n + \"the rainforest remained largely intact but extended less far to the north, \\n\"\n + \"south, and east than is seen today. This debate has proved difficult to \\n\"\n + \"resolve because the practical limitations of working in the rainforest mean \\n\"\n + \"that data sampling is biased away from the center of the Amazon basin, and \\n\"\n + \"both explanations are reasonably well supported by the available data.\\n\"\n + \"\\n\"\n + \"Q: What does LGM stands for?\\n\"\n + \"A: Last Glacial Maximum.\\n\"\n + \"\\n\"\n + \"Q: What did the analysis from the sediment deposits indicate?\\n\"\n + \"A: Rainfall in the basin during the LGM was lower than for the present.\\n\"\n + \"\\n\"\n + \"Q: What are some of scientists arguments?\\n\"\n + \"A: The rainforest was reduced to small, isolated refugia separated by open forest\"\n + \" and grassland.\\n\"\n + \"\\n\"\n + \"Q: There have been major changes in Amazon rainforest vegetation over the last how\"\n + \" many years?\\n\"\n + \"A: 21,000.\\n\"\n + \"\\n\"\n + \"Q: What caused changes in the Amazon rainforest vegetation?\\n\"\n + \"A: The Last Glacial Maximum (LGM) and subsequent deglaciation\\n\"\n + \"\\n\"\n + \"Q: What has been analyzed to compare Amazon rainfall in the past and present?\\n\"\n + \"A: Sediment deposits.\\n\"\n + \"\\n\"\n + \"Q: What has the lower rainfall in the Amazon during the LGM been attributed to?\\n\"\n + \"A:\\\"}\";\n String parameters =\n \"{\\n\"\n + \" \\\"temperature\\\": 0,\\n\"\n + \" \\\"maxOutputTokens\\\": 32,\\n\"\n + \" \\\"topP\\\": 0,\\n\"\n + \" \\\"topK\\\": 1\\n\"\n + \"}\";\n String project = \"YOUR_PROJECT_ID\";\n String location = \"us-central1\";\n String publisher = \"google\";\n String model = \"text-bison@001\";\n\n predictTextSummarization(instance, parameters, project, location, publisher, model);\n }\n\n // Get summarization from a supported text model\n public static void predictTextSummarization(\n String instance,\n String parameters,\n String project,\n String location,\n String publisher,\n String model)\n throws IOException {\n String endpoint = String.format(\"%s-aiplatform.googleapis.com:443\", location);\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictionServiceSettings.html predictionServiceSettings =\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictionServiceSettings.html.newBuilder()\n .setEndpoint(endpoint)\n .build();\n\n // Initialize client that will be used to send requests. This client only needs to be created\n // once, and can be reused for multiple requests.\n try (https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictionServiceClient.html predictionServiceClient =\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictionServiceClient.html.create(predictionServiceSettings)) {\n final https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.EndpointName.html endpointName =\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.EndpointName.html.https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.EndpointName.html#com_google_cloud_aiplatform_v1_EndpointName_ofProjectLocationPublisherModelName_java_lang_String_java_lang_String_java_lang_String_java_lang_String_(project, location, publisher, model);\n\n // Use Value.Builder to convert instance to a dynamically typed value that can be\n // processed by the service.\n https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.Value.html.Builder instanceValue = https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.Value.html.newBuilder();\n https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.util.JsonFormat.html.parser().merge(instance, instanceValue);\n https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.ListValue.html instances = new ArrayList\u003c\u003e();\n instances.add(instanceValue.build());\n\n // Use Value.Builder to convert parameter to a dynamically typed value that can be\n // processed by the service.\n https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.Value.html.Builder parameterValueBuilder = https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.Value.html.newBuilder();\n https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.util.JsonFormat.html.parser().merge(parameters, parameterValueBuilder);\n https://cloud.google.com/java/docs/reference/protobuf/latest/com.google.protobuf.Value.html parameterValue = parameterValueBuilder.build();\n\n https://cloud.google.com/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1.PredictResponse.html predictResponse =\n predictionServiceClient.predict(endpointName, instances, parameterValue);\n System.out.println(\"Predict Response\");\n System.out.println(predictResponse);\n }\n }\n }\n\nWhat's next\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]