Receber um job de previsão em lote

Recebe um job de previsão em lote usando o método get_batch_predict_job.

Exemplo de código

Java

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.


import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputInfo;
import com.google.cloud.aiplatform.v1.BatchPredictionJobName;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.CompletionStats;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.ResourcesConsumed;
import com.google.protobuf.Any;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.List;

public class GetBatchPredictionJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String batchPredictionJobId = "YOUR_BATCH_PREDICTION_JOB_ID";
    getBatchPredictionJobSample(project, batchPredictionJobId);
  }

  static void getBatchPredictionJobSample(String project, String batchPredictionJobId)
      throws IOException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";
      BatchPredictionJobName batchPredictionJobName =
          BatchPredictionJobName.of(project, location, batchPredictionJobId);

      BatchPredictionJob batchPredictionJob =
          jobServiceClient.getBatchPredictionJob(batchPredictionJobName);

      System.out.println("Get Batch Prediction Job Response");
      System.out.format("\tName: %s\n", batchPredictionJob.getName());
      System.out.format("\tDisplay Name: %s\n", batchPredictionJob.getDisplayName());
      System.out.format("\tModel: %s\n", batchPredictionJob.getModel());

      System.out.format("\tModel Parameters: %s\n", batchPredictionJob.getModelParameters());
      System.out.format("\tState: %s\n", batchPredictionJob.getState());

      System.out.format("\tCreate Time: %s\n", batchPredictionJob.getCreateTime());
      System.out.format("\tStart Time: %s\n", batchPredictionJob.getStartTime());
      System.out.format("\tEnd Time: %s\n", batchPredictionJob.getEndTime());
      System.out.format("\tUpdate Time: %s\n", batchPredictionJob.getUpdateTime());
      System.out.format("\tLabels: %s\n", batchPredictionJob.getLabelsMap());

      InputConfig inputConfig = batchPredictionJob.getInputConfig();
      System.out.println("\tInput Config");
      System.out.format("\t\tInstances Format: %s\n", inputConfig.getInstancesFormat());

      GcsSource gcsSource = inputConfig.getGcsSource();
      System.out.println("\t\tGcs Source");
      System.out.format("\t\t\tUris: %s\n", gcsSource.getUrisList());

      BigQuerySource bigquerySource = inputConfig.getBigquerySource();
      System.out.println("\t\tBigquery Source");
      System.out.format("\t\t\tInput Uri: %s\n", bigquerySource.getInputUri());

      OutputConfig outputConfig = batchPredictionJob.getOutputConfig();
      System.out.println("\tOutput Config");
      System.out.format("\t\tPredictions Format: %s\n", outputConfig.getPredictionsFormat());

      GcsDestination gcsDestination = outputConfig.getGcsDestination();
      System.out.println("\t\tGcs Destination");
      System.out.format("\t\t\tOutput Uri Prefix: %s\n", gcsDestination.getOutputUriPrefix());

      BigQueryDestination bigqueryDestination = outputConfig.getBigqueryDestination();
      System.out.println("\t\tBigquery Destination");
      System.out.format("\t\t\tOutput Uri: %s\n", bigqueryDestination.getOutputUri());

      OutputInfo outputInfo = batchPredictionJob.getOutputInfo();
      System.out.println("\tOutput Info");
      System.out.format("\t\tGcs Output Directory: %s\n", outputInfo.getGcsOutputDirectory());
      System.out.format("\t\tBigquery Output Dataset: %s\n", outputInfo.getBigqueryOutputDataset());

      Status status = batchPredictionJob.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());

      List<Any> detailsList = status.getDetailsList();

      for (Status partialFailure : batchPredictionJob.getPartialFailuresList()) {
        System.out.println("\tPartial Failure");
        System.out.format("\t\tCode: %s\n", partialFailure.getCode());
        System.out.format("\t\tMessage: %s\n", partialFailure.getMessage());
        List<Any> details = partialFailure.getDetailsList();
      }

      ResourcesConsumed resourcesConsumed = batchPredictionJob.getResourcesConsumed();
      System.out.println("\tResources Consumed");
      System.out.format("\t\tReplica Hours: %s\n", resourcesConsumed.getReplicaHours());

      CompletionStats completionStats = batchPredictionJob.getCompletionStats();
      System.out.println("\tCompletion Stats");
      System.out.format("\t\tSuccessful Count: %s\n", completionStats.getSuccessfulCount());
      System.out.format("\t\tFailed Count: %s\n", completionStats.getFailedCount());
      System.out.format("\t\tIncomplete Count: %s\n", completionStats.getIncompleteCount());
    }
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const batchPredictionJobId = 'YOUR_BATCH_PREDICTION_JOB_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Job Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function getBatchPredictionJob() {
  // Configure the parent resource
  const name = `projects/${project}/locations/${location}/batchPredictionJobs/${batchPredictionJobId}`;
  const request = {
    name,
  };

  // Get batch prediction request
  const [response] = await jobServiceClient.getBatchPredictionJob(request);

  console.log('Get batch prediction job response');
  console.log(`\tName : ${response.name}`);
  console.log(`\tDisplayName : ${response.displayName}`);
  console.log(`\tModel : ${response.model}`);
  console.log(`\tModel parameters : ${response.modelParameters}`);
  console.log(`\tGenerate explanation : ${response.generateExplanation}`);
  console.log(`\tState : ${response.state}`);
  console.log(`\tCreate Time : ${JSON.stringify(response.createTime)}`);
  console.log(`\tStart Time : ${JSON.stringify(response.startTime)}`);
  console.log(`\tEnd Time : ${JSON.stringify(response.endTime)}`);
  console.log(`\tUpdate Time : ${JSON.stringify(response.updateTime)}`);
  console.log(`\tLabels : ${JSON.stringify(response.labels)}`);

  const inputConfig = response.inputConfig;
  console.log('\tInput config');
  console.log(`\t\tInstances format : ${inputConfig.instancesFormat}`);

  const gcsSource = inputConfig.gcsSource;
  console.log('\t\tGcs source');
  console.log(`\t\t\tUris : ${gcsSource.uris}`);

  const bigquerySource = inputConfig.bigquerySource;
  console.log('\t\tBigQuery Source');
  if (!bigquerySource) {
    console.log('\t\t\tInput Uri : {}');
  } else {
    console.log(`\t\t\tInput Uri : ${bigquerySource.inputUri}`);
  }

  const outputConfig = response.outputConfig;
  console.log('\t\tOutput config');
  console.log(`\t\tPredictions format : ${outputConfig.predictionsFormat}`);

  const gcsDestination = outputConfig.gcsDestination;
  console.log('\t\tGcs Destination');
  console.log(`\t\t\tOutput uri prefix : ${gcsDestination.outputUriPrefix}`);

  const bigqueryDestination = outputConfig.bigqueryDestination;
  if (!bigqueryDestination) {
    console.log('\t\tBigquery Destination');
    console.log('\t\t\tOutput uri : {}');
  } else {
    console.log('\t\tBigquery Destination');
    console.log(`\t\t\tOutput uri : ${bigqueryDestination.outputUri}`);
  }

  const outputInfo = response.outputInfo;
  if (!outputInfo) {
    console.log('\tOutput info');
    console.log('\t\tGcs output directory : {}');
    console.log('\t\tBigquery_output_dataset : {}');
  } else {
    console.log('\tOutput info');
    console.log(
      `\t\tGcs output directory : ${outputInfo.gcsOutputDirectory}`
    );
    console.log(`\t\tBigquery_output_dataset :
          ${outputInfo.bigqueryOutputDataset}`);
  }

  const error = response.error;
  console.log('\tError');
  console.log(`\t\tCode : ${error.code}`);
  console.log(`\t\tMessage : ${error.message}`);

  const details = error.details;
  console.log(`\t\tDetails : ${details}`);

  const partialFailures = response.partialFailures;
  console.log('\tPartial failure');
  console.log(partialFailures);

  const resourcesConsumed = response.resourcesConsumed;
  console.log('\tResource consumed');
  if (!resourcesConsumed) {
    console.log('\t\tReplica Hours: {}');
  } else {
    console.log(`\t\tReplica Hours: ${resourcesConsumed.replicaHours}`);
  }

  const completionStats = response.completionStats;
  console.log('\tCompletion status');
  if (!completionStats) {
    console.log('\t\tSuccessful count: {}');
    console.log('\t\tFailed count: {}');
    console.log('\t\tIncomplete count: {}');
  } else {
    console.log(`\t\tSuccessful count: ${completionStats.successfulCount}`);
    console.log(`\t\tFailed count: ${completionStats.failedCount}`);
    console.log(`\t\tIncomplete count: ${completionStats.incompleteCount}`);
  }
}
getBatchPredictionJob();

Python

Para saber como instalar e usar a biblioteca de cliente para Vertex AI, consulte Bibliotecas de cliente Vertex AI. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

from google.cloud import aiplatform

def get_batch_prediction_job_sample(
    project: str,
    batch_prediction_job_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    name = client.batch_prediction_job_path(
        project=project, location=location, batch_prediction_job=batch_prediction_job_id
    )
    response = client.get_batch_prediction_job(name=name)
    print("response:", response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte o navegador de exemplos do Google Cloud.