Eliminar un conjunto de datos

Elimina un conjunto de datos mediante el método delete_dataset.

Código de ejemplo

Go

Antes de probar este ejemplo, sigue las Go instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Go de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1/aiplatformpb"
	"google.golang.org/api/option"
)

func deleteDataset(w io.Writer, projectID, location, datasetID string) error {
	// projectID := "my-project"
	// location := "us-central1"
	// datasetID := "my-dataset"

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	clientOption := option.WithEndpoint(apiEndpoint)

	ctx := context.Background()
	aiplatformService, err := aiplatform.NewDatasetClient(ctx, clientOption)
	if err != nil {
		return err
	}
	defer aiplatformService.Close()

	req := &aiplatformpb.DeleteDatasetRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/datasets/%s",
			projectID, location, datasetID),
	}

	op, err := aiplatformService.DeleteDataset(ctx, req)
	if err != nil {
		return err
	}

	err = op.Wait(ctx)
	if err != nil {
		return ctx.Err()
	}

	fmt.Fprintf(w, "Deleted dataset: %s\n", datasetID)
	return nil
}

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteDatasetSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    deleteDatasetSample(project, datasetId);
  }

  static void deleteDatasetSample(String project, String datasetId)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      DatasetName datasetName = DatasetName.of(project, location, datasetId);

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          datasetServiceClient.deleteDatasetAsync(datasetName);
      System.out.format("Operation name: %s\n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(300, TimeUnit.SECONDS);

      System.out.format("Deleted Dataset.");
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las Node.js instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Node.js de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function deleteDataset() {
  // Configure the resource
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  const request = {name};

  // Delete Dataset Request
  const [response] = await datasetServiceClient.deleteDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Delete dataset response:\n', result);
}
deleteDataset();

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from google.cloud import aiplatform


def delete_dataset_sample(
    project: str,
    dataset_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    name = client.dataset_path(project=project, location=location, dataset=dataset_id)
    response = client.delete_dataset(name=name)
    print("Long running operation:", response.operation.name)
    delete_dataset_response = response.result(timeout=timeout)
    print("delete_dataset_response:", delete_dataset_response)

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.