Criar um pipeline de treinamento para rastreamento de objetos de vídeo

Cria um pipeline de treinamento para rastreamento de objetos de vídeo usando o método create_training_pipeline.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoObjectTrackingInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoObjectTrackingInputs.ModelType;
import com.google.rpc.Status;
import java.io.IOException;

public class CreateTrainingPipelineVideoObjectTrackingSample {

  public static void main(String[] args) throws IOException {
    String trainingPipelineVideoObjectTracking =
        "YOUR_TRAINING_PIPELINE_VIDEO_OBJECT_TRACKING_DISPLAY_NAME";
    String datasetId = "YOUR_DATASET_ID";
    String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
    String project = "YOUR_PROJECT_ID";
    createTrainingPipelineVideoObjectTracking(
        trainingPipelineVideoObjectTracking, datasetId, modelDisplayName, project);
  }

  static void createTrainingPipelineVideoObjectTracking(
      String trainingPipelineVideoObjectTracking,
      String datasetId,
      String modelDisplayName,
      String project)
      throws IOException {
    PipelineServiceSettings pipelineServiceSettings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      String trainingTaskDefinition =
          "gs://google-cloud-aiplatform/schema/trainingjob/definition/"
              + "automl_video_object_tracking_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      AutoMlVideoObjectTrackingInputs trainingTaskInputs =
          AutoMlVideoObjectTrackingInputs.newBuilder().setModelType(ModelType.CLOUD).build();

      InputDataConfig inputDataConfig =
          InputDataConfig.newBuilder().setDatasetId(datasetId).build();
      Model modelToUpload = Model.newBuilder().setDisplayName(modelDisplayName).build();
      TrainingPipeline trainingPipeline =
          TrainingPipeline.newBuilder()
              .setDisplayName(trainingPipelineVideoObjectTracking)
              .setTrainingTaskDefinition(trainingTaskDefinition)
              .setTrainingTaskInputs(ValueConverter.toValue(trainingTaskInputs))
              .setInputDataConfig(inputDataConfig)
              .setModelToUpload(modelToUpload)
              .build();

      TrainingPipeline createTrainingPipelineResponse =
          pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

      System.out.println("Create Training Pipeline Video Object Tracking Response");
      System.out.format("Name: %s\n", createTrainingPipelineResponse.getName());
      System.out.format("Display Name: %s\n", createTrainingPipelineResponse.getDisplayName());

      System.out.format(
          "Training Task Definition %s\n",
          createTrainingPipelineResponse.getTrainingTaskDefinition());
      System.out.format(
          "Training Task Inputs: %s\n",
          createTrainingPipelineResponse.getTrainingTaskInputs().toString());
      System.out.format(
          "Training Task Metadata: %s\n",
          createTrainingPipelineResponse.getTrainingTaskMetadata().toString());

      System.out.format("State: %s\n", createTrainingPipelineResponse.getState().toString());
      System.out.format(
          "Create Time: %s\n", createTrainingPipelineResponse.getCreateTime().toString());
      System.out.format("StartTime %s\n", createTrainingPipelineResponse.getStartTime().toString());
      System.out.format("End Time: %s\n", createTrainingPipelineResponse.getEndTime().toString());
      System.out.format(
          "Update Time: %s\n", createTrainingPipelineResponse.getUpdateTime().toString());
      System.out.format("Labels: %s\n", createTrainingPipelineResponse.getLabelsMap().toString());

      InputDataConfig inputDataConfigResponse = createTrainingPipelineResponse.getInputDataConfig();
      System.out.println("Input Data config");
      System.out.format("Dataset Id: %s\n", inputDataConfigResponse.getDatasetId());
      System.out.format("Annotations Filter: %s\n", inputDataConfigResponse.getAnnotationsFilter());

      FractionSplit fractionSplit = inputDataConfigResponse.getFractionSplit();
      System.out.println("Fraction split");
      System.out.format("Training Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", fractionSplit.getTestFraction());

      FilterSplit filterSplit = inputDataConfigResponse.getFilterSplit();
      System.out.println("Filter Split");
      System.out.format("Training Filter: %s\n", filterSplit.getTrainingFilter());
      System.out.format("Validation Filter: %s\n", filterSplit.getValidationFilter());
      System.out.format("Test Filter: %s\n", filterSplit.getTestFilter());

      PredefinedSplit predefinedSplit = inputDataConfigResponse.getPredefinedSplit();
      System.out.println("Predefined Split");
      System.out.format("Key: %s\n", predefinedSplit.getKey());

      TimestampSplit timestampSplit = inputDataConfigResponse.getTimestampSplit();
      System.out.println("Timestamp Split");
      System.out.format("Training Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("Key: %s\n", timestampSplit.getKey());

      Model modelResponse = createTrainingPipelineResponse.getModelToUpload();
      System.out.println("Model To Upload");
      System.out.format("Name: %s\n", modelResponse.getName());
      System.out.format("Display Name: %s\n", modelResponse.getDisplayName());
      System.out.format("Description: %s\n", modelResponse.getDescription());
      System.out.format("Metadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", modelResponse.getMetadata());

      System.out.format("Training Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("Artifact Uri: %s\n", modelResponse.getArtifactUri());

      System.out.format(
          "Supported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList().toString());
      System.out.format(
          "Supported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList().toString());
      System.out.format(
          "Supported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList().toString());

      System.out.format("Create Time: %s\n", modelResponse.getCreateTime());
      System.out.format("Update Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("Labels: %s\n", modelResponse.getLabelsMap());

      Status status = createTrainingPipelineResponse.getError();
      System.out.println("Error");
      System.out.format("Code: %s\n", status.getCode());
      System.out.format("Message: %s\n", status.getMessage());
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
const ModelType = definition.AutoMlVideoObjectTrackingInputs.ModelType;

// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineVideoObjectTracking() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  const trainingTaskInputsObj =
    new definition.AutoMlVideoObjectTrackingInputs({
      modelType: ModelType.CLOUD,
    });
  const trainingTaskInputs = trainingTaskInputsObj.toValue();

  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId: datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
    trainingTaskDefinition:
      'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_object_tracking_1.0.0.yaml',
    trainingTaskInputs,
    inputDataConfig,
    modelToUpload,
  };
  const request = {
    parent,
    trainingPipeline,
  };

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline video object tracking response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineVideoObjectTracking();

Python

Antes de testar essa amostra, siga as instruções de configuração para Python Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import trainingjob

def create_training_pipeline_video_object_tracking_sample(
    project: str,
    display_name: str,
    dataset_id: str,
    model_display_name: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
    training_task_inputs = trainingjob.definition.AutoMlVideoObjectTrackingInputs(
        model_type="CLOUD",
    ).to_value()

    training_pipeline = {
        "display_name": display_name,
        "training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_object_tracking_1.0.0.yaml",
        "training_task_inputs": training_task_inputs,
        "input_data_config": {"dataset_id": dataset_id},
        "model_to_upload": {"display_name": model_display_name},
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_training_pipeline(
        parent=parent, training_pipeline=training_pipeline
    )
    print("response:", response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.