Crée un pipeline d'entraînement pour la régression tabulaire à l'aide de la méthode create_training_pipeline.
En savoir plus
Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :
Exemple de code
Java
Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation.AutoTransformation;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation.TimestampTransformation;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.ArrayList;
public class CreateTrainingPipelineTabularRegressionSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String modelDisplayName = "YOUR_DATASET_DISPLAY_NAME";
String datasetId = "YOUR_DATASET_ID";
String targetColumn = "TARGET_COLUMN";
createTrainingPipelineTableRegression(project, modelDisplayName, datasetId, targetColumn);
}
static void createTrainingPipelineTableRegression(
String project, String modelDisplayName, String datasetId, String targetColumn)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
LocationName locationName = LocationName.of(project, location);
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tables_1.0.0.yaml";
// Set the columns used for training and their data types
ArrayList<Transformation> tranformations = new ArrayList<>();
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("STRING_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("INTEGER_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("FLOAT_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("FLOAT_5000unique_REPEATED"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("NUMERIC_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("BOOLEAN_2unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setTimestamp(
TimestampTransformation.newBuilder()
.setColumnName("TIMESTAMP_1unique_NULLABLE")
.setInvalidValuesAllowed(true))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("DATE_1unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("TIME_1unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setTimestamp(
TimestampTransformation.newBuilder()
.setColumnName("DATETIME_1unique_NULLABLE")
.setInvalidValuesAllowed(true))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(
AutoTransformation.newBuilder()
.setColumnName("STRUCT_NULLABLE.STRING_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(
AutoTransformation.newBuilder()
.setColumnName("STRUCT_NULLABLE.INTEGER_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(
AutoTransformation.newBuilder()
.setColumnName("STRUCT_NULLABLE.FLOAT_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(
AutoTransformation.newBuilder()
.setColumnName("STRUCT_NULLABLE.FLOAT_5000unique_REQUIRED"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(
AutoTransformation.newBuilder()
.setColumnName("STRUCT_NULLABLE.FLOAT_5000unique_REPEATED"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(
AutoTransformation.newBuilder()
.setColumnName("STRUCT_NULLABLE.NUMERIC_5000unique_NULLABLE"))
.build());
tranformations.add(
Transformation.newBuilder()
.setAuto(
AutoTransformation.newBuilder()
.setColumnName("STRUCT_NULLABLE.TIMESTAMP_1unique_NULLABLE"))
.build());
AutoMlTablesInputs trainingTaskInputs =
AutoMlTablesInputs.newBuilder()
.addAllTransformations(tranformations)
.setTargetColumn(targetColumn)
.setPredictionType("regression")
.setTrainBudgetMilliNodeHours(8000)
.setDisableEarlyStopping(false)
// supported regression optimisation objectives: minimize-rmse,
// minimize-mae, minimize-rmsle
.setOptimizationObjective("minimize-rmse")
.build();
FractionSplit fractionSplit =
FractionSplit.newBuilder()
.setTrainingFraction(0.8)
.setValidationFraction(0.1)
.setTestFraction(0.1)
.build();
InputDataConfig inputDataConfig =
InputDataConfig.newBuilder()
.setDatasetId(datasetId)
.setFractionSplit(fractionSplit)
.build();
Model modelToUpload = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(modelDisplayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(ValueConverter.toValue(trainingTaskInputs))
.setInputDataConfig(inputDataConfig)
.setModelToUpload(modelToUpload)
.build();
TrainingPipeline trainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);
System.out.println("Create Training Pipeline Tabular Regression Response");
System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());
System.out.format(
"\tTraining Task Definition: %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
System.out.format(
"\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
System.out.format("\tState: %s\n", trainingPipelineResponse.getState());
System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
System.out.format("\tStart Time: %s\n", trainingPipelineResponse.getStartTime());
System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());
InputDataConfig inputDataConfigResponse = trainingPipelineResponse.getInputDataConfig();
System.out.println("\tInput Data Config");
System.out.format("\t\tDataset Id: %s\n", inputDataConfigResponse.getDatasetId());
System.out.format(
"\t\tAnnotations Filter: %s\n", inputDataConfigResponse.getAnnotationsFilter());
FractionSplit fractionSplitResponse = inputDataConfigResponse.getFractionSplit();
System.out.println("\t\tFraction Split");
System.out.format(
"\t\t\tTraining Fraction: %s\n", fractionSplitResponse.getTrainingFraction());
System.out.format(
"\t\t\tValidation Fraction: %s\n", fractionSplitResponse.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", fractionSplitResponse.getTestFraction());
FilterSplit filterSplit = inputDataConfigResponse.getFilterSplit();
System.out.println("\t\tFilter Split");
System.out.format("\t\t\tTraining Fraction: %s\n", filterSplit.getTrainingFilter());
System.out.format("\t\t\tValidation Fraction: %s\n", filterSplit.getValidationFilter());
System.out.format("\t\t\tTest Fraction: %s\n", filterSplit.getTestFilter());
PredefinedSplit predefinedSplit = inputDataConfigResponse.getPredefinedSplit();
System.out.println("\t\tPredefined Split");
System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());
TimestampSplit timestampSplit = inputDataConfigResponse.getTimestampSplit();
System.out.println("\t\tTimestamp Split");
System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());
Model modelResponse = trainingPipelineResponse.getModelToUpload();
System.out.println("\tModel To Upload");
System.out.format("\t\tName: %s\n", modelResponse.getName());
System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());
System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("\t\tMeta Data: %s\n", modelResponse.getMetadata());
System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());
System.out.format(
"\t\tSupported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList().toString());
System.out.format(
"\t\tSupported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList().toString());
System.out.format(
"\t\tSupported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList().toString());
System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
System.out.format("\t\tLables: %s\n", modelResponse.getLabelsMap());
PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
System.out.println("\tPredict Schemata");
System.out.format("\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
System.out.format(
"\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
System.out.format(
"\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());
for (Model.ExportFormat supportedExportFormat :
modelResponse.getSupportedExportFormatsList()) {
System.out.println("\tSupported Export Format");
System.out.format("\t\tId: %s\n", supportedExportFormat.getId());
}
ModelContainerSpec containerSpec = modelResponse.getContainerSpec();
System.out.println("\tContainer Spec");
System.out.format("\t\tImage Uri: %s\n", containerSpec.getImageUri());
System.out.format("\t\tCommand: %s\n", containerSpec.getCommandList());
System.out.format("\t\tArgs: %s\n", containerSpec.getArgsList());
System.out.format("\t\tPredict Route: %s\n", containerSpec.getPredictRoute());
System.out.format("\t\tHealth Route: %s\n", containerSpec.getHealthRoute());
for (EnvVar envVar : containerSpec.getEnvList()) {
System.out.println("\t\tEnv");
System.out.format("\t\t\tName: %s\n", envVar.getName());
System.out.format("\t\t\tValue: %s\n", envVar.getValue());
}
for (Port port : containerSpec.getPortsList()) {
System.out.println("\t\tPort");
System.out.format("\t\t\tContainer Port: %s\n", port.getContainerPort());
}
for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
System.out.println("\tDeployed Model");
System.out.format("\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
System.out.format("\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}
Status status = trainingPipelineResponse.getError();
System.out.println("\tError");
System.out.format("\t\tCode: %s\n", status.getCode());
System.out.format("\t\tMessage: %s\n", status.getMessage());
}
}
}
Node.js
Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const targetColumn = 'YOUR_TARGET_COLUMN';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);
async function createTrainingPipelineTablesRegression() {
// Configure the parent resource
const parent = `projects/${project}/locations/${location}`;
const transformations = [
{auto: {column_name: 'STRING_5000unique_NULLABLE'}},
{auto: {column_name: 'INTEGER_5000unique_NULLABLE'}},
{auto: {column_name: 'FLOAT_5000unique_NULLABLE'}},
{auto: {column_name: 'FLOAT_5000unique_REPEATED'}},
{auto: {column_name: 'NUMERIC_5000unique_NULLABLE'}},
{auto: {column_name: 'BOOLEAN_2unique_NULLABLE'}},
{
timestamp: {
column_name: 'TIMESTAMP_1unique_NULLABLE',
invalid_values_allowed: true,
},
},
{auto: {column_name: 'DATE_1unique_NULLABLE'}},
{auto: {column_name: 'TIME_1unique_NULLABLE'}},
{
timestamp: {
column_name: 'DATETIME_1unique_NULLABLE',
invalid_values_allowed: true,
},
},
{auto: {column_name: 'STRUCT_NULLABLE.STRING_5000unique_NULLABLE'}},
{auto: {column_name: 'STRUCT_NULLABLE.INTEGER_5000unique_NULLABLE'}},
{auto: {column_name: 'STRUCT_NULLABLE.FLOAT_5000unique_NULLABLE'}},
{auto: {column_name: 'STRUCT_NULLABLE.FLOAT_5000unique_REQUIRED'}},
{auto: {column_name: 'STRUCT_NULLABLE.FLOAT_5000unique_REPEATED'}},
{auto: {column_name: 'STRUCT_NULLABLE.NUMERIC_5000unique_NULLABLE'}},
{auto: {column_name: 'STRUCT_NULLABLE.BOOLEAN_2unique_NULLABLE'}},
{auto: {column_name: 'STRUCT_NULLABLE.TIMESTAMP_1unique_NULLABLE'}},
];
const trainingTaskInputsObj = new definition.AutoMlTablesInputs({
transformations,
targetColumn,
predictionType: 'regression',
trainBudgetMilliNodeHours: 8000,
disableEarlyStopping: false,
optimizationObjective: 'minimize-rmse',
});
const trainingTaskInputs = trainingTaskInputsObj.toValue();
const modelToUpload = {displayName: modelDisplayName};
const inputDataConfig = {
datasetId: datasetId,
fractionSplit: {
trainingFraction: 0.8,
validationFraction: 0.1,
testFraction: 0.1,
},
};
const trainingPipeline = {
displayName: trainingPipelineDisplayName,
trainingTaskDefinition:
'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tables_1.0.0.yaml',
trainingTaskInputs,
inputDataConfig,
modelToUpload,
};
const request = {
parent,
trainingPipeline,
};
// Create training pipeline request
const [response] =
await pipelineServiceClient.createTrainingPipeline(request);
console.log('Create training pipeline tabular regression response');
console.log(`Name : ${response.name}`);
console.log('Raw response:');
console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineTablesRegression();
Python
Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
def create_training_pipeline_tabular_regression_sample(
project: str,
display_name: str,
dataset_id: str,
model_display_name: str,
target_column: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
# set the columns used for training and their data types
transformations = [
{"auto": {"column_name": "STRING_5000unique_NULLABLE"}},
{"auto": {"column_name": "INTEGER_5000unique_NULLABLE"}},
{"auto": {"column_name": "FLOAT_5000unique_NULLABLE"}},
{"auto": {"column_name": "FLOAT_5000unique_REPEATED"}},
{"auto": {"column_name": "NUMERIC_5000unique_NULLABLE"}},
{"auto": {"column_name": "BOOLEAN_2unique_NULLABLE"}},
{
"timestamp": {
"column_name": "TIMESTAMP_1unique_NULLABLE",
"invalid_values_allowed": True,
}
},
{"auto": {"column_name": "DATE_1unique_NULLABLE"}},
{"auto": {"column_name": "TIME_1unique_NULLABLE"}},
{
"timestamp": {
"column_name": "DATETIME_1unique_NULLABLE",
"invalid_values_allowed": True,
}
},
{"auto": {"column_name": "STRUCT_NULLABLE.STRING_5000unique_NULLABLE"}},
{"auto": {"column_name": "STRUCT_NULLABLE.INTEGER_5000unique_NULLABLE"}},
{"auto": {"column_name": "STRUCT_NULLABLE.FLOAT_5000unique_NULLABLE"}},
{"auto": {"column_name": "STRUCT_NULLABLE.FLOAT_5000unique_REQUIRED"}},
{"auto": {"column_name": "STRUCT_NULLABLE.FLOAT_5000unique_REPEATED"}},
{"auto": {"column_name": "STRUCT_NULLABLE.NUMERIC_5000unique_NULLABLE"}},
{"auto": {"column_name": "STRUCT_NULLABLE.BOOLEAN_2unique_NULLABLE"}},
{"auto": {"column_name": "STRUCT_NULLABLE.TIMESTAMP_1unique_NULLABLE"}},
]
training_task_inputs_dict = {
# required inputs
"targetColumn": target_column,
"predictionType": "regression",
"transformations": transformations,
"trainBudgetMilliNodeHours": 8000,
# optional inputs
"disableEarlyStopping": False,
# supported regression optimisation objectives: minimize-rmse,
# minimize-mae, minimize-rmsle
"optimizationObjective": "minimize-rmse",
}
training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())
training_pipeline = {
"display_name": display_name,
"training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tabular_1.0.0.yaml",
"training_task_inputs": training_task_inputs,
"input_data_config": {
"dataset_id": dataset_id,
"fraction_split": {
"training_fraction": 0.8,
"validation_fraction": 0.1,
"test_fraction": 0.1,
},
},
"model_to_upload": {"display_name": model_display_name},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_training_pipeline(
parent=parent, training_pipeline=training_pipeline
)
print("response:", response)
Étapes suivantes
Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.