Criar um conjunto de dados para o Cloud Storage tabular

Cria um conjunto de dados para o Cloud Storage tabular usando o método create_dataset.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularGcsSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String gcsSourceUri = "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_gcs_table/file.csv";
    ;
    createDatasetTableGcs(project, datasetDisplayName, gcsSourceUri);
  }

  static void createDatasetTableGcs(String project, String datasetDisplayName, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"gcs_source\": {\"uri\": [\"" + gcsSourceUri + "\"]}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table GCS sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularGcs() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              gcsSource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: gcsSourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular gcs response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularGcs();

Python

Antes de testar essa amostra, siga as instruções de configuração para Python Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value


def create_dataset_tabular_gcs_sample(
    project: str,
    display_name: str,
    gcs_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.DatasetServiceClient(client_options=client_options)
    metadata_dict = {"input_config": {"gcs_source": {"uri": [gcs_uri]}}}
    metadata = json_format.ParseDict(metadata_dict, Value())

    dataset = {
        "display_name": display_name,
        "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml",
        "metadata": metadata,
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_dataset(parent=parent, dataset=dataset)
    print("Long running operation:", response.operation.name)
    create_dataset_response = response.result(timeout=timeout)
    print("create_dataset_response:", create_dataset_response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.