Créer une tâche d'étiquetage de données pour les images
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Créez un job d'étiquetage de données pour les images à l'aide de la méthode create_data_labeling_job.
Exemple de code
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[],[],null,["# Create a data labeling job for images\n\nCreates a data labeling job for images using the create_data_labeling_job method.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google.cloud import aiplatform\n from google.protobuf import json_format\n from google.protobuf.struct_pb2 import Value\n\n\n def create_data_labeling_job_images_sample(\n project: str,\n display_name: str,\n dataset: str,\n instruction_uri: str,\n annotation_spec: str,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform.gapic.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.job_service.JobServiceClient.html(client_options=client_options)\n inputs_dict = {\"annotation_specs\": [annotation_spec]}\n inputs = json_format.ParseDict(inputs_dict, Value())\n\n data_labeling_job = {\n \"display_name\": display_name,\n # Full resource name: projects/{project_id}/locations/{location}/datasets/{dataset_id}\n \"datasets\": [dataset],\n # labeler_count must be 1, 3, or 5\n \"labeler_count\": 1,\n \"instruction_uri\": instruction_uri,\n \"inputs_schema_uri\": \"gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/image_classification_1.0.0.yaml\",\n \"inputs\": inputs,\n \"annotation_labels\": {\n \"aiplatform.googleapis.com/annotation_set_name\": \"my_test_saved_query\"\n },\n }\n parent = f\"projects/{project}/locations/{location}\"\n response = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.job_service.JobServiceClient.html#google_cloud_aiplatform_v1_services_job_service_JobServiceClient_create_data_labeling_job(\n parent=parent, data_labeling_job=data_labeling_job\n )\n print(\"response:\", response)\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]