This page lists parameters for different functions provided by Cloud SQL to register and manage model endpoints. The page also lists the secrets that you can manage by using model endpoint management.
Models
Use this reference to understand parameters for functions that let you manage model endpoints.
mysql.ml_create_model_registration()
The following shows how to use the mysql.ml_create_model_registration()
function
to register model endpoint metadata:
CALL
mysql.ml_create_model_registration(
'MODEL_ID',
'REQUEST_URL',
'PROVIDER_ID',
'MODEL_TYPE',
'MODEL_QUALIFIED_NAME',
'AUTH_TYPE',
'AUTH_ID',
'GENERATE_HEADER_FUNCTION',
'INPUT_TRANSFORM_FUNCTION',
'OUTPUT_TRANSFORM_FUNCTION');
Parameter | Required | Description |
---|---|---|
MODEL_ID |
Required for all model endpoints | A unique ID for the model endpoint that you define. |
REQUEST_URL |
Can be NULL for Vertex AI models | The model-specific endpoint when adding other text embedding and generic model endpoints. The request URL that the function generates for built-in model endpoints refers to your cluster's project and region or location. If you want to refer to another project, then ensure that you specify the For custom hosted model endpoints, ensure that the model endpoint is accessible through the internet. |
PROVIDER_ID |
Required for text embedding model endpoints with built-in support | The provider of the model endpoint. The default value is custom . For Cloud SQL, set the provider to google for Vertex AI model endpoints, open_ai for OpenAI model endpoints, anthropic for Anthropic model endpoints, hugging_face for Hugging Face model endpoints, or custom for custom-hosted model endpoints. |
MODEL_TYPE |
Can be NULL for generic model endpoints | The model type. You can set this value to text_embedding for text embedding model endpoints or generic for all other model endpoints. |
MODEL_QUALIFIED_NAME |
Required for OpenAI model endpoints; can be NULL for other model endpoints | The fully qualified name in case the model endpoint has multiple versions or if the model endpoint defines it—for example, textembedding-gecko@001 or textembedding-gecko@002 . Since the textembedding-gecko@001 model is pre-registered with model endpoint management, you can generate embeddings using textembedding-gecko@001 as the model ID. |
AUTH_TYPE |
Can be NULL unless model endpoint has specific authentication requirement | The authentication type used by the model endpoint. You can set it to either auth_type_cloudsql_service_agent_iam for Vertex AI models or auth_type_secret_manager for other providers. |
AUTH_ID |
Pass as NULL for Vertex AI endpoints; required for all other model endpoints that store secrets in Secret Manager | The secret ID that you set and is subsequently used when registering a model endpoint. |
GENERATE_HEADER_FUNCTION |
Can be NULL | The function name you set to generate custom headers. The signature of this function depends on the mysql.ml_predict_row() function. See HTTP Header generation function. |
INPUT_TRANSFORM_FUNCTION |
Optional for text embedding model endpoints with built-in support;don't set for generic model endpoints | The function to transform input of the corresponding prediction function to the model-specific input. See Transform functions. |
OUTPUT_TRANSFORM_FUNCTION |
Optional for text embedding model endpoints with built-in support;don't set for generic model endpoints | The function to transform model specific output to the prediction function output. See Transform functions. |
mysql.ml_alter_model_registration()
The following shows how to call the mysql.ml_alter_model_registration()
SQL function used
to update model endpoint metadata:
CALL
mysql.ml_alter_model_registration(
'MODEL_ID',
'REQUEST_URL',
'PROVIDER_ID',
'MODEL_TYPE',
'MODEL_QUALIFIED_NAME',
'AUTH_TYPE',
'AUTH_ID',
'GENERATE_HEADER_FUNCTION',
'INPUT_TRANSFORM_FUNCTION',
'OUTPUT_TRANSFORM_FUNCTION');
mysql.ml_drop_model_registration()
The following shows how to call the mysql.ml_drop_model_registration()
SQL function used
to drop a model endpoint:
CALL mysql.ml_drop_model_registration('MODEL_ID');
Parameter | Description |
---|---|
MODEL_ID |
A unique ID for the model endpoint that you define. |
mysql.ml_list_registered_model()
The following shows how to call the mysql.ml_list_registered_model()
SQL function used
to list model endpoint information:
SELECT mysql.ml_list_registered_model('MODEL_ID');
Parameter | Description |
---|---|
MODEL_ID |
A unique ID for the model endpoint that you define. |
mysql.cloudsql_ml_models
The following shows how to query the mysql.cloudsql_ml_models
table that's
used to list model endpoint information for all model endpoints:
SELECT * FROM mysql.cloudsql_ml_models;
Secrets
Use this reference to understand parameters for functions that let you manage secrets.
mysql.ml_create_sm_secret_registration()
The following shows how to call the mysql.ml_create_sm_secret_registration()
SQL function
used to add the secret created in Secret Manager:
CALL
mysql.ml_create_sm_secret_registration(
'SECRET_ID',
'projects/PROJECT_ID/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSION_NUMBER');
Parameter | Description |
---|---|
SECRET_ID |
The secret ID that you set and is subsequently used when registering a model endpoint. |
PROJECT_ID |
The ID of your Google Cloud project that contains the secret. This project can be different from the project that contains your Cloud SQL instance. |
SECRET_MANAGER_SECRET_ID |
The secret ID set in Secret Manager when you created the secret. |
VERSION_NUMBER |
The version number of the secret ID. |
mysql.ml_alter_sm_secret_registration()
The following shows how to call the mysql.ml_alter_sm_secret_registration()
SQL function
used to update secret information:
CALL
mysql.ml_alter_sm_secret_registration(
'SECRET_ID',
'projects/PROJECT_ID/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSION_NUMBER');
Parameter | Description |
---|---|
SECRET_ID |
The secret ID that you set and is subsequently used when registering a model endpoint. |
PROJECT_ID |
The ID of your Google Cloud project that contains the secret. This project can be different from the project that contains your Cloud SQL instance. |
SECRET_MANAGER_SECRET_ID |
The secret ID set in Secret Manager when you created the secret. |
VERSION_NUMBER |
The version number of the secret ID. |
mysql.ml_drop_sm_secret_registration()
The following shows how to call the mysql.ml_drop_sm_secret_registration()
SQL function
used to drop a secret:
CALL mysql.ml_drop_sm_secret_registration('SECRET_ID');
Parameter | Description |
---|---|
SECRET_ID |
The secret ID that you set and is subsequently used when registering a model endpoint. |
Prediction functions
Use this reference to understand parameters for functions that let you generate embeddings or invoke predictions.
mysql.ml_embedding()
The following shows how to generate embeddings:
SELECT
mysql.ml_embedding(
'MODEL_ID',
'CONTENT');
Parameter | Description |
---|---|
MODEL_ID |
A unique ID for the model endpoint that you define. |
CONTENT |
the text to translate into a vector embedding. |
For examples of SQL queries to generate text embeddings, see Examples.
mysql.ml_predict_row()
The following shows how to invoke predictions:
SELECT
mysql.ml_predict_row(
'MODEL_ID',
'REQUEST_BODY');
Parameter | Description |
---|---|
MODEL_ID |
A unique ID for the model endpoint that you define. |
REQUEST_BODY |
the parameters to the prediction function, in JSON format. |
For examples of SQL queries to invoke predictions, see Examples.
Transform functions
Use this reference to understand parameters for input and output transform functions.
Input transform function
The following shows the signature for the prediction function for text embedding model endpoints:
CREATE FUNCTION IF NOT EXISTS
INPUT_TRANSFORM_FUNCTION(model_id VARCHAR(100), input_text TEXT) RETURNS JSON DETERMINISTIC;
Parameter | Description |
---|---|
INPUT_TRANSFORM_FUNCTION |
The function to transform input of the corresponding prediction function to the model endpoint-specific input. |
Output transform function
The following shows the signature for the prediction function for text embedding model endpoints:
CREATE FUNCTION IF NOT EXISTS
OUTPUT_TRANSFORM_FUNCTION(model_id VARCHAR(100), response_json JSON) RETURNS BLOB DETERMINISTIC;
Parameter | Description |
---|---|
OUTPUT_TRANSFORM_FUNCTION |
The function to transform model endpoint-specific output to the prediction function output. |
Transform functions example
To better understand how to create transform functions for your model endpoint, consider a custom-hosted text embedding model endpoint that requires JSON input and output.
The following example curl request creates embeddings based on the prompt and the model endpoint:
curl -m 100 -X POST https://cymbal.com/models/text/embeddings/v1 \
-H "Content-Type: application/json"
-d '{"prompt": ["Cloud SQL Embeddings"]}'
The following example response is returned:
[[ 0.3522231 -0.35932037 0.10156056 0.17734447 -0.11606089 -0.17266059
0.02509351 0.20305622 -0.09787305 -0.12154685 -0.17313677 -0.08075467
0.06821183 -0.06896557 0.1171584 -0.00931572 0.11875633 -0.00077482
0.25604948 0.0519384 0.2034983 -0.09952664 0.10347155 -0.11935943
-0.17872004 -0.08706985 -0.07056875 -0.05929353 0.4177883 -0.14381726
0.07934926 0.31368294 0.12543282 0.10758053 -0.30210832 -0.02951015
0.3908268 -0.03091059 0.05302926 -0.00114946 -0.16233777 0.1117468
-0.1315904 0.13947351 -0.29569918 -0.12330773 -0.04354299 -0.18068913
0.14445548 0.19481727]]
Based on this input and response, you can infer the following:
The model expects JSON input through the
prompt
field. This field accepts an array of inputs. As themysql.ml_embedding()
function is a row level function, it expects one text input at a time. Thus, you need to create an input transform function that builds an array with a single element.The response from the model is an array of embeddings, one for each prompt input to the model. As the
mysql.ml_embedding()
function is a row level function, it returns a single input at a time. Thus, you need to create an output transform function that can be used to extract the embedding from the array.
The following example shows the input and output transform functions that is used for this model endpoint when it is registered with model endpoint management:
input transform function
DELIMITER $$
CREATE FUNCTION IF NOT EXISTS cymbal_text_input_transform(model_id VARCHAR(100), input_text TEXT)
RETURNS JSON
DETERMINISTIC
BEGIN
RETURN JSON_OBJECT('prompt', JSON_ARRAY(input_text));
END $$
output transform function
CREATE FUNCTION IF NOT EXISTS cymbal_text_output_transform(model_id VARCHAR(100), response_json JSON)
RETURNS BLOB
DETERMINISTIC
BEGIN
RETURN STRING_TO_VECTOR(
JSON_EXTRACT(
content,
'$.predictions[0].embeddings.values'
)
);
END $$
DELIMITER ;
HTTP header generation function
The following shows signature for the header generation function that can be used with the `mysql.ml_embedding()` prediction function when registering other text embedding model endpoints.
CREATE FUNCTION IF NOT EXISTS GENERATE_HEADERS(model_id VARCHAR(100), input_text TEXT) RETURNS JSON DETERMINISTIC;
For the mysql.ml_predict_row()
prediction function, the signature is as
follows:
CREATE FUNCTION IF NOT EXISTS GENERATE_HEADERS(model_id TEXT, input JSON) RETURNS JSON DETERMINISTIC;
Parameter | Description |
---|---|
GENERATE_HEADERS |
The function to generate custom headers. You can also pass the authorization header generated by the header generation function while registering the model endpoint. |
Header generation function example
To better understand how to create a function that generates output in JSON key value pairs that are used as HTTP headers, consider a custom-hosted text embedding model endpoint.
The following example curl request passes the version
HTTP header, which is
used by the model endpoint:
curl -m 100 -X POST https://cymbal.com/models/text/embeddings/v1 \
-H "Content-Type: application/json" \
-H "version: 2024-01-01" \
-d '{"prompt": ["Cloud SQL Embeddings"]}'
The model expects text input through the version
field and returns the version
value in JSON format. The following example shows the header generation function
that is used for this text embedding model endpoint when it is registered with model
endpoint management:
DELIMITER $$
CREATE FUNCTION IF NOT EXISTS header_gen_fn(model_id VARCHAR(100), input_text TEXT)
RETURNS JSON
DETERMINISTIC
BEGIN
RETURN JSON_OBJECT('version', '2024-01-01');
END;
$$
DELIMITER ;