- 0.54.0 (latest)
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::FeatureStatsAnomaly.
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#anomaly_detection_threshold
def anomaly_detection_threshold() -> ::Float
- (::Float) — This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from ThresholdConfig.value.
#anomaly_detection_threshold=
def anomaly_detection_threshold=(value) -> ::Float
- value (::Float) — This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from ThresholdConfig.value.
- (::Float) — This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from ThresholdConfig.value.
#anomaly_uri
def anomaly_uri() -> ::String
- (::String) — Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://
#anomaly_uri=
def anomaly_uri=(value) -> ::String
- value (::String) — Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://
- (::String) — Path of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://
#distribution_deviation
def distribution_deviation() -> ::Float
-
(::Float) —
Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
#distribution_deviation=
def distribution_deviation=(value) -> ::Float
-
value (::Float) —
Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
-
(::Float) —
Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
#end_time
def end_time() -> ::Google::Protobuf::Timestamp
- (::Google::Protobuf::Timestamp) — The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
#end_time=
def end_time=(value) -> ::Google::Protobuf::Timestamp
- value (::Google::Protobuf::Timestamp) — The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
- (::Google::Protobuf::Timestamp) — The end timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
#score
def score() -> ::Float
- (::Float) — Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW and ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT.
#score=
def score=(value) -> ::Float
- value (::Float) — Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW and ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT.
- (::Float) — Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW and ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT.
#start_time
def start_time() -> ::Google::Protobuf::Timestamp
- (::Google::Protobuf::Timestamp) — The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
#start_time=
def start_time=(value) -> ::Google::Protobuf::Timestamp
- value (::Google::Protobuf::Timestamp) — The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
- (::Google::Protobuf::Timestamp) — The start timestamp of window where stats were generated. For objectives where time window doesn't make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
#stats_uri
def stats_uri() -> ::String
- (::String) — Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://
#stats_uri=
def stats_uri=(value) -> ::String
- value (::String) — Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://
- (::String) — Path of the stats file for current feature values in Cloud Storage bucket. Format: gs://