- 0.53.0 (latest)
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::Schema::TrainingJob::Definition::AutoMlTablesInputs::Transformation::NumericTransformation.
Training pipeline will perform following transformation functions.
- The value converted to float32.
- The z_score of the value.
- log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.
- z_score of log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value.
- A boolean value that indicates whether the value is valid.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#column_name
def column_name() -> ::String
Returns
- (::String)
#column_name=
def column_name=(value) -> ::String
Parameter
- value (::String)
Returns
- (::String)
#invalid_values_allowed
def invalid_values_allowed() -> ::Boolean
Returns
- (::Boolean) — If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.
#invalid_values_allowed=
def invalid_values_allowed=(value) -> ::Boolean
Parameter
- value (::Boolean) — If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.
Returns
- (::Boolean) — If invalid values is allowed, the training pipeline will create a boolean feature that indicated whether the value is valid. Otherwise, the training pipeline will discard the input row from trainining data.