- 0.51.0 (latest)
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API module Google::Cloud::AIPlatform::V1::ExplanationMetadata::InputMetadata::Encoding.
Defines how a feature is encoded. Defaults to IDENTITY.
Constants
ENCODING_UNSPECIFIED
value: 0
Default value. This is the same as IDENTITY.
IDENTITY
value: 1
The tensor represents one feature.
BAG_OF_FEATURES
value: 2
The tensor represents a bag of features where each index maps to
a feature. InputMetadata.index_feature_mapping must be provided for
this encoding. For example:
input = [27, 6.0, 150]
index_feature_mapping = ["age", "height", "weight"]
BAG_OF_FEATURES_SPARSE
value: 3
The tensor represents a bag of features where each index maps to a
feature. Zero values in the tensor indicates feature being
non-existent. InputMetadata.index_feature_mapping must be provided
for this encoding. For example:
input = [2, 0, 5, 0, 1]
index_feature_mapping = ["a", "b", "c", "d", "e"]
INDICATOR
value: 4
The tensor is a list of binaries representing whether a feature exists
or not (1 indicates existence). InputMetadata.index_feature_mapping
must be provided for this encoding. For example:
input = [1, 0, 1, 0, 1]
index_feature_mapping = ["a", "b", "c", "d", "e"]
COMBINED_EMBEDDING
value: 5
The tensor is encoded into a 1-dimensional array represented by an
encoded tensor. InputMetadata.encoded_tensor_name must be provided
for this encoding. For example:
input = ["This", "is", "a", "test", "."]
encoded = [0.1, 0.2, 0.3, 0.4, 0.5]
CONCAT_EMBEDDING
value: 6
Select this encoding when the input tensor is encoded into a
2-dimensional array represented by an encoded tensor.
InputMetadata.encoded_tensor_name must be provided for this
encoding. The first dimension of the encoded tensor's shape is the same
as the input tensor's shape. For example:
input = ["This", "is", "a", "test", "."]
encoded = [[0.1, 0.2, 0.3, 0.4, 0.5],
[0.2, 0.1, 0.4, 0.3, 0.5],
[0.5, 0.1, 0.3, 0.5, 0.4],
[0.5, 0.3, 0.1, 0.2, 0.4],
[0.4, 0.3, 0.2, 0.5, 0.1]]