マネー ロンダリングを検出するように設計されたモデルをトレーニングおよびテストする
開発マシンまたは Google Cloud コンソールでコマンドライン ツールを使用して、Anti Money Laundering AI の基本操作を行う方法を学習します。
このガイドでは、サンプルの銀行取引データを AML AI への入力としての BigQuery テーブル。API バックテストの結果と結果を含む BigQuery テーブルを出力します。 予測結果が得られますこの結果は、資金のストラクチャリングによってマネー ロンダリングを行う当事者の例を分析するために使用されます。
準備
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
- Install the Google Cloud CLI.
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
Create or select a Google Cloud project.
-
Create a Google Cloud project:
gcloud projects create PROJECT_ID
Replace
PROJECT_ID
with a name for the Google Cloud project you are creating. -
Select the Google Cloud project that you created:
gcloud config set project PROJECT_ID
Replace
PROJECT_ID
with your Google Cloud project name.
-
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required APIs:
gcloud services enable financialservices.googleapis.com
bigquery.googleapis.com cloudkms.googleapis.com bigquerydatatransfer.googleapis.com -
If you're using a local shell, then create local authentication credentials for your user account:
gcloud auth application-default login
You don't need to do this if you're using Cloud Shell.
-
Grant roles to your user account. Run the following command once for each of the following IAM roles:
roles/financialservices.admin
gcloud projects add-iam-policy-binding PROJECT_ID --member="USER_IDENTIFIER" --role=ROLE
- Replace
PROJECT_ID
with your project ID. -
Replace
USER_IDENTIFIER
with the identifier for your user account. For example,user:myemail@example.com
. - Replace
ROLE
with each individual role.
- Replace
- Install the Google Cloud CLI.
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
Create or select a Google Cloud project.
-
Create a Google Cloud project:
gcloud projects create PROJECT_ID
Replace
PROJECT_ID
with a name for the Google Cloud project you are creating. -
Select the Google Cloud project that you created:
gcloud config set project PROJECT_ID
Replace
PROJECT_ID
with your Google Cloud project name.
-
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required APIs:
gcloud services enable financialservices.googleapis.com
bigquery.googleapis.com cloudkms.googleapis.com bigquerydatatransfer.googleapis.com -
If you're using a local shell, then create local authentication credentials for your user account:
gcloud auth application-default login
You don't need to do this if you're using Cloud Shell.
-
Grant roles to your user account. Run the following command once for each of the following IAM roles:
roles/financialservices.admin
gcloud projects add-iam-policy-binding PROJECT_ID --member="USER_IDENTIFIER" --role=ROLE
- Replace
PROJECT_ID
with your project ID. -
Replace
USER_IDENTIFIER
with the identifier for your user account. For example,user:myemail@example.com
. - Replace
ROLE
with each individual role.
- Replace
- このガイドの API リクエストでは、ガイドをより簡単に完了できるように、同じ Google Cloud のプロジェクト、ロケーション、ハードコードされたリソース ID を使用します。リソース ID は、
my-
resource-type(例:my-key-ring
、my-model
)のパターンに従います。このガイドでは、次のように置き換えを定義しています。
PROJECT_ID
: IAM 設定に載っている Google Cloud プロジェクト ID。PROJECT_NUMBER
: PROJECT_ID に関連付けられたプロジェクト番号。プロジェクト番号は IAM 設定ページで確認できます。LOCATION
: API リソースのロケーション。サポートされているリージョンのいずれかを使用します。3~7 つの店舗を表示us-central1
us-east1
asia-south1
europe-west1
europe-west2
europe-west4
northamerica-northeast1
southamerica-east1
インスタンスを作成する
このセクションでは、インスタンスの作成方法について説明します。AML AI インスタンスは、他のすべての AML AI リソースのルートにあります。各インスタンスには、AML AI によって作成されたデータの暗号化に使用する関連付けられた顧客管理の暗号鍵(CMEK)が 1 つ必要です。
キーリングを作成する
キーリングを作成するには、projects.locations.keyRings.create
メソッドを使用します。
REST
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
"https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings?key_ring_id=my-key-ring"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings?key_ring_id=my-key-ring" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring", "createTime": CREATE_TIME }
gcloud
次のコマンドを実行します。
Linux、macOS、Cloud Shell
gcloud kms keyrings create my-key-ring \ --location LOCATION
Windows(PowerShell)
gcloud kms keyrings create my-key-ring ` --location LOCATION
Windows(cmd.exe)
gcloud kms keyrings create my-key-ring ^ --location LOCATION
$
キーを作成
鍵を作成するには、projects.locations.keyRings.cryptoKeys
メソッドを使用します。
REST
JSON 本文のリクエスト:
{ "purpose": "ENCRYPT_DECRYPT" }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "purpose": "ENCRYPT_DECRYPT" } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys?crypto_key_id=my-key"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "purpose": "ENCRYPT_DECRYPT" } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys?crypto_key_id=my-key" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key", "primary": { "name": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key/cryptoKeyVersions/1", "state": "ENABLED", "createTime": CREATE_TIME, "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION", "generateTime": GENERATE_TIME }, "purpose": "ENCRYPT_DECRYPT", "createTime": CREATE_TIME, "versionTemplate": { "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION" }, "destroyScheduledDuration": "86400s" }
gcloud
後述のコマンドデータを使用する前に、次のように置き換えます。
LOCATION
: キーリングのロケーション。 サポートされているリージョンのいずれかを使用します。3~7 つの店舗を表示us-central1
us-east1
asia-south1
europe-west1
europe-west2
europe-west4
northamerica-northeast1
southamerica-east1
次のコマンドを実行します。
Linux、macOS、Cloud Shell
gcloud kms keys create my-key \ --keyring my-key-ring \ --location LOCATION \ --purpose "encryption"
Windows(PowerShell)
gcloud kms keys create my-key ` --keyring my-key-ring ` --location LOCATION ` --purpose "encryption"
Windows(cmd.exe)
gcloud kms keys create my-key ^ --keyring my-key-ring ^ --location LOCATION ^ --purpose "encryption"
$
API を使用してインスタンスを作成する
インスタンスを作成するには、
projects.locations.instances.create
メソッドを呼び出します。
JSON 本文のリクエスト:
{ "kmsKey": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "kmsKey": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances?instance_id=my-instance"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "kmsKey": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances?instance_id=my-instance" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
成功した場合、レスポンスの本文には長時間実行オペレーションが含まれます。これには、非同期オペレーションの進行中のステータスを取得するために使用できる ID が含まれています。返された OPERATION_ID をコピーして、次のセクションで使用します。
結果を確認する
インスタンスが作成されたかどうかを確認するには、projects.locations.operations.get
メソッドを使用します。レスポンスに "done": false
が含まれている場合は、レスポンスに "done": true
が含まれるまでコマンドを繰り返します。
このガイドのオペレーションは、完了するまでに数分から数時間かかることがあります。API は一部のメソッドの出力を他のメソッドへの入力として使用するため、このガイドでは、オペレーションが完了するまで待ってから次に進んでください。
リクエストのデータを使用する前に、次のように置き換えます。
OPERATION_ID
: オペレーションの ID。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "endTime": END_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": true, "response": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.Instance", "name": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "createTime": CREATE_TIME, "updateTime": UPDATE_TIME, "kmsKey": "projects/KMS_PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key", "state": "ACTIVE" } }
CMEK 鍵へのアクセス権の付与
この API により、プロジェクト内にサービス アカウントが自動的に作成されます。サービス アカウントは、CMEK 鍵を使用して基盤となるデータの暗号化と復号を行うために、CMEK 鍵にアクセスする必要があります。鍵へのアクセス権を付与します。
gcloud kms keys add-iam-policy-binding "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" \
--keyring "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring" \
--location "LOCATION" \
--member "serviceAccount:service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com" \
--role="roles/cloudkms.cryptoKeyEncrypterDecrypter" \
--project="PROJECT_ID"
BigQuery データセットを作成します
このセクションでは、入出力の BigQuery データセットを作成し、サンプルのバンキング データを入力データセットにコピーする方法について説明します。
出力データセットを作成する
次のコマンドを実行して、使用するデータセットを作成します。 使用されます
bq mk \
--location=LOCATION \
--project_id=PROJECT_ID \
my_bq_output_dataset
入力データセットを作成する
次のコマンドを実行して、サンプルのバンキング テーブルをコピーするためのデータセットを作成します。
bq mk \
--location=LOCATION \
--project_id=PROJECT_ID \
my_bq_input_dataset
サンプル データセットをコピーする
サンプルのバンキング データは、BigQuery 一般公開データセットとして提供されています。このデータセットの主な特徴は次のとおりです。
- 100,000の当事者
- コアタイム範囲(2020 年 1 月 1 日から 2023 年 1 月 1 日まで)と、さらに 24 か月間の過去データ
- 否定的なリスクケースが 300 件、肯定的なリスクケースが 20 件
- 次の属性を持つリスクケース:
- ポジティブ リスクケースの半分は、
AML_PROCESS_START
イベントの前の 2 か月間に発生したストラクチャリング活動に関するものです。 - 残りの半分は、
AML_PROCESS_START
イベントの前の 2 か月間で受領額が最も高い当事者を対象としています。 - ネガティブ ケースはランダムに生成されます。
- 逆の状態でリスクケースが生成される可能性は 0.1%です(例えば、ポジティブでランダムな当事者、またはストラクチャリング活動や最も高い所得があり、ネガティブと報告される当事者など)。
- ポジティブ リスクケースの半分は、
次のコマンドを実行して、作成した入力データセットにサンプルのバンキング データをコピーします。
bq mk --transfer_config \ --project_id="PROJECT_ID" \ --data_source=cross_region_copy \ --target_dataset="my_bq_input_dataset" \ --display_name="Copy the AML sample dataset." \ --schedule=None \ --params='{ "source_project_id":"bigquery-public-data", "source_dataset_id":"aml_ai_input_dataset", "overwrite_destination_table":"true" }'
Google Cloud コンソールで BigQuery を開く
[エクスプローラ] ペインで入力データセットを見つけて開きます。数回 入力データセットにテーブルが表示されます。また、 移管のステータス BigQuery ナビゲーションから [データ転送] を選択する 選択します。AML スキーマは AML 入力データモデルで定義されています。
BigQuery データセットへのアクセス権の付与
API により、プロジェクトにサービス アカウントが自動的に作成されます。サービス アカウントには、BigQuery の入力データセットと出力データセットへのアクセス権が必要です。
- 開発マシンに
jq
をインストールします。開発マシンにjq
をインストールできない場合は、Cloud Shell か、BigQuery ドキュメントにあるリソースへのアクセス権を付与するのいずれかの方法を使用することができます。 - 次のコマンドを実行して、入力データセットとそのテーブルに対する読み取りアクセス権を付与します。
# Request the current access permissions on the BigQuery dataset and store them in a temp file.
bq show --format=prettyjson "PROJECT_ID:my_bq_input_dataset" | jq '.access+=[{"role":"READER","userByEmail":"service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com" }]'> /tmp/mydataset.json
# Update the BigQuery dataset access permissions using the temp file.
bq update --source /tmp/mydataset.json "PROJECT_ID:my_bq_input_dataset"
# Grant the API read access to the BigQuery table if the table is provided.
for table in party_registration party account_party_link transaction risk_case_event party_supplementary_data
do
[ -n table ] && bq add-iam-policy-binding \
--member="serviceAccount:service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com" --role="roles/bigquery.dataViewer" \
PROJECT_ID:my_bq_input_dataset.${table}
done
次のコマンドを実行して、出力データセットへの書き込みアクセス権を付与します。
# Request the current access permissions on the BigQuery dataset and store them in a temp file.
bq show --format=prettyjson "PROJECT_ID:my_bq_output_dataset" | jq '.access+=[{"role":"roles/bigquery.dataEditor","userByEmail":"service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com" }]'> /tmp/mydataset.json
# Update the BigQuery dataset access permissions using the temp file.
bq update --source /tmp/mydataset.json "PROJECT_ID:my_bq_output_dataset"
AML AI データセットを作成する
AML AI データセットを作成して入力を指定する BigQuery データセット テーブルと使用する期間。
データセットを作成するには、projects.locations.instances.datasets.create
メソッドを使用します。
JSON 本文のリクエスト:
{ "tableSpecs": { "party": "bq://PROJECT_ID.my_bq_input_dataset.party", "account_party_link": "bq://PROJECT_ID.my_bq_input_dataset.account_party_link", "transaction": "bq://PROJECT_ID.my_bq_input_dataset.transaction", "risk_case_event": "bq://PROJECT_ID.my_bq_input_dataset.risk_case_event", "party_supplementary_data": "bq://PROJECT_ID.my_bq_input_dataset.party_supplementary_data" }, "dateRange": { "startTime": "2020-01-01T00:00:0.00Z", "endTime": "2023-01-01T00:00:0.00Z" }, "timeZone": { "id": "UTC" } }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "tableSpecs": { "party": "bq://PROJECT_ID.my_bq_input_dataset.party", "account_party_link": "bq://PROJECT_ID.my_bq_input_dataset.account_party_link", "transaction": "bq://PROJECT_ID.my_bq_input_dataset.transaction", "risk_case_event": "bq://PROJECT_ID.my_bq_input_dataset.risk_case_event", "party_supplementary_data": "bq://PROJECT_ID.my_bq_input_dataset.party_supplementary_data" }, "dateRange": { "startTime": "2020-01-01T00:00:0.00Z", "endTime": "2023-01-01T00:00:0.00Z" }, "timeZone": { "id": "UTC" } } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets?dataset_id=my-dataset"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "tableSpecs": { "party": "bq://PROJECT_ID.my_bq_input_dataset.party", "account_party_link": "bq://PROJECT_ID.my_bq_input_dataset.account_party_link", "transaction": "bq://PROJECT_ID.my_bq_input_dataset.transaction", "risk_case_event": "bq://PROJECT_ID.my_bq_input_dataset.risk_case_event", "party_supplementary_data": "bq://PROJECT_ID.my_bq_input_dataset.party_supplementary_data" }, "dateRange": { "startTime": "2020-01-01T00:00:0.00Z", "endTime": "2023-01-01T00:00:0.00Z" }, "timeZone": { "id": "UTC" } } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets?dataset_id=my-dataset" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
新しいオペレーション ID を使用して、オペレーションの結果を確認できます。(このガイドで使用する残りの API リクエストでも同様にできます)。
エンジン構成を作成する
自動的にチューニングする AML AI エンジン構成を作成する ハイパーパラメータを選択できます。エンジン バージョンは定期的にリリースされ、異なるモデルロジック(たとえば、小売部門と商用部門のターゲットなど)に対応しています。
エンジン構成を作成するには、次を使用します:
projects.locations.instances.engineConfigs.create
メソッドを呼び出します。
JSON 本文のリクエスト:
{ "engineVersion": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineVersions/aml-commercial.default.v004.000.202312-000", "tuning": { "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z", }, "performanceTarget": { "partyInvestigationsPerPeriodHint": "30" } }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "engineVersion": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineVersions/aml-commercial.default.v004.000.202312-000", "tuning": { "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z", }, "performanceTarget": { "partyInvestigationsPerPeriodHint": "30" } } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs?engine_config_id=my-engine-config"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "engineVersion": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineVersions/aml-commercial.default.v004.000.202312-000", "tuning": { "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z", }, "performanceTarget": { "partyInvestigationsPerPeriodHint": "30" } } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs?engine_config_id=my-engine-config" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
モデルを作成する
AML AI モデルを作成して AML トレーニング パイプラインを開始します。
モデルを作成するには、projects.locations.instances.models.create
メソッドを使用します。
JSON 本文のリクエスト:
{ "engineConfig": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "engineConfig": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models?model_id=my-model"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "engineConfig": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models?model_id=my-model" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
バックテスト結果を作成する
バックテスト予測では、既存の過去のデータに対してトレーニング済みモデルを使用します。データセット内の過去 12 か月間のバックテスト結果を作成します。この期間はトレーニングでは使用されません。
バックテスト結果を作成するには、projects.locations.instances.backtestResults.create
メソッドを使用します。
JSON 本文のリクエスト:
{ "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "backtestPeriods": 12, "performanceTarget": { "partyInvestigationsPerPeriodHint": "150" } }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "backtestPeriods": 12, "performanceTarget": { "partyInvestigationsPerPeriodHint": "150" } } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults?backtest_result_id=my-backtest-results"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "backtestPeriods": 12, "performanceTarget": { "partyInvestigationsPerPeriodHint": "150" } } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults?backtest_result_id=my-backtest-results" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
バックテスト結果のメタデータをエクスポートする
バックテストの結果からメタデータをエクスポートするには、次のコマンドを使用します。
projects.locations.instances.backtestResults.exportMetadata
メソッドを呼び出します。
JSON 本文のリクエスト:
{ "structuredMetadataDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_backtest_results_metadata", "writeDisposition": "WRITE_TRUNCATE" } }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "structuredMetadataDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_backtest_results_metadata", "writeDisposition": "WRITE_TRUNCATE" } } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results:exportMetadata"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "structuredMetadataDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_backtest_results_metadata", "writeDisposition": "WRITE_TRUNCATE" } } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results:exportMetadata" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results", "verb": "exportMetadata", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
Google Cloud コンソールで BigQuery を開く
[エクスプローラ] ペインで出力データセットを見つけて展開します。
テーブルを選択し、[プレビュー] をクリックします。
ObservedRecallValues という名前の行を見つけます。
調査のキャパシティが 1 か月あたり 120 であるとします。
"partyInvestigationsPerPeriod": "120"
で再現率値のオブジェクトを見つけます。次のサンプル値では、リスクスコアが 0.53 を超える当事者に調査を制限すると、毎月 120 の新しい当事者を調査できます。バックテスト期間中の 2022 年において、以前のシステムで識別されたケースの 86% が特定されます(おそらく、古いシステムでは識別されなかった他のケースも考えられます)。{ "recallValues": [ ... { "partyInvestigationsPerPeriod": "105", "recallValue": 0.8142077, "scoreThreshold": 0.6071321 }, { "partyInvestigationsPerPeriod": "120", "recallValue": 0.863388, "scoreThreshold": 0.5339603 }, { "partyInvestigationsPerPeriod": "135", "recallValue": 0.89071035, "scoreThreshold": 0.4739899 }, ... ] }
登録済み当事者をインポートする
予測結果を作成する前に、登録済みのパーティ(データセット内の顧客)をインポートする必要があります。
登録済みの当事者をインポートするには、projects.locations.instances.importRegisteredParties
メソッドを使用します。
JSON 本文のリクエスト:
{ "partyTables": [ "bq://PROJECT_ID.my_bq_input_dataset.party_registration" ], "mode": "REPLACE", "lineOfBusiness": "COMMERCIAL" }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "partyTables": [ "bq://PROJECT_ID.my_bq_input_dataset.party_registration" ], "mode": "REPLACE", "lineOfBusiness": "COMMERCIAL" } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance:importRegisteredParties"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "partyTables": [ "bq://PROJECT_ID.my_bq_input_dataset.party_registration" ], "mode": "REPLACE", "lineOfBusiness": "COMMERCIAL" } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance:importRegisteredParties" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "importRegisteredParties", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
オペレーションが完了すると、10,000 の当事者が登録されたことを確認できます。
予測結果を作成する
データセットの最後の 12 か月に関する予測結果を作成します。これらの月はトレーニングで使用されていません。
予測結果を作成するには、projects.locations.instances.predictionResults.create
メソッドを使用します。
JSON 本文のリクエスト:
{ "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "predictionPeriods": "12", "outputs": { "predictionDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results", "writeDisposition": "WRITE_TRUNCATE" }, "explainabilityDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability", "writeDisposition": "WRITE_TRUNCATE" } } }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "predictionPeriods": "12", "outputs": { "predictionDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results", "writeDisposition": "WRITE_TRUNCATE" }, "explainabilityDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability", "writeDisposition": "WRITE_TRUNCATE" } } } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults?prediction_result_id=my-prediction-results"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "predictionPeriods": "12", "outputs": { "predictionDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results", "writeDisposition": "WRITE_TRUNCATE" }, "explainabilityDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability", "writeDisposition": "WRITE_TRUNCATE" } } } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults?prediction_result_id=my-prediction-results" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
Google Cloud コンソールで 1 つのストラクチャリングケースを分析する
Google Cloud コンソールで BigQuery を開くSQL と workspace が選択されています。
[BigQuery] ページは、3 つのメイン セクションから構成されています。
- BigQuery のナビゲーション メニュー
- [エクスプローラ] ペイン
- 詳細ペイン
詳細ペインで、[クエリを新規作成] をクリックしてクエリエディタを開きます。
次の SQL ステートメントをエディタにコピーし、[実行] をクリックします。
SELECT * FROM `PROJECT_ID.my_bq_input_dataset.transaction` WHERE account_id = '1E60OAUNKP84WDKB' AND DATE_TRUNC(book_time, MONTH) = "2022-08-01" ORDER by book_time
このステートメントは、2022 年 8 月のアカウント ID
1E60OAUNKP84WDKB
を確認します。このアカウントは、当事者の IDEGS4NJD38JZ8NTL8
にリンクされています。特定のアカウント ID の当事者 ID は、AccountPartyLink テーブルで確認できます。トランザクション データには、1 つのアカウントを対象とした一連のラウンド トランザクションが表示されますが、これは疑わしい可能性があります。
次の SQL ステートメントをエディタにコピーし、[実行] をクリックします。
SELECT * FROM `PROJECT_ID.my_bq_input_dataset.risk_case_event` WHERE party_id = 'EGS4NJD38JZ8NTL8'
このステートメントは、この当事者の退出につながるリスクケースが存在したことを示しています。このリスクケースは疑わしいアクティビティから 2 か月後に始まりました。
次の SQL ステートメントをエディタにコピーし、[実行] をクリックします。
SELECT * FROM `PROJECT_ID.my_bq_output_dataset.my_prediction_results` WHERE party_id = 'EGS4NJD38JZ8NTL8' ORDER BY risk_period_end_time
予測結果を確認すると、ほぼゼロであった当事者のリスクスコアが(指数値であることに注意)、不審なアクティビティが検出された翌月には高い値に増加していることがわかります。実際の結果は、表示された結果と異なる場合があります。
リスクスコアは確率ではありません。常に他のリスクスコアと比較して評価する必要があります。たとえば、小さく見える値であっても、他のリスクスコアの方が低い場合は、ポジティブと見なすことができます。
次の SQL ステートメントをエディタにコピーし、[実行] をクリックします。
SELECT * FROM `PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability` WHERE party_id = 'EGS4NJD38JZ8NTL8' AND risk_period_end_time = '2022-10-01'
説明可能性の結果を確認することで、正しい特徴ファミリーが最も高い値であることがわかります。
クリーンアップ
このページで使用したリソースについて、Google Cloud アカウントに課金されないようにするには、Google Cloud プロジェクトとそのリソースをまとめて削除してください。
予測結果を削除する
予測結果を削除するには、projects.locations.instances.predictionResults.delete
メソッドを使用します。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
バックテスト結果を削除する
バックテストの結果を削除するには、次のコマンドを使用します。
projects.locations.instances.backtestResults.delete
メソッドを呼び出します。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
モデルを削除します。
モデルを削除するには、projects.locations.instances.models.delete
メソッドを使用します。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
エンジン設定の削除
エンジン設定を削除するには、次を使用します:
projects.locations.instances.engineConfigs.delete
メソッドを呼び出します。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
データセットの削除
データセットを削除するには、projects.locations.instances.datasets.delete
メソッドを使用します。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
インスタンスの削除
インスタンスを削除するには、projects.locations.instances.delete
コマンドを使用します。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
BigQuery データセットを削除する
bq rm -r -f -d PROJECT_ID:my_bq_input_dataset
bq rm -r -f -d PROJECT_ID:my_bq_output_dataset
次のステップ
- 概要で主なコンセプトを確認する。
- リファレンス ドキュメントを確認する