Consultas de agregação

Uma consulta de agregação processa os dados de várias entidades indexadas para retornam um único valor de resumo. O Firestore no modo Datastore é compatível com os seguintes consultas de agregação:

  • count()
  • sum()
  • avg()

As consultas de agregação simplificam o código do aplicativo e custam menos do que buscar cada entidade para processamento. Leia esta página para saber como usar as consultas de agregação.

Agregação de count()

Use a agregação count() para retornar o número total de entidades indexadas. que correspondem a uma determinada consulta. Por exemplo, essa agregação count() retorna o número total de entidades de um tipo.

Java
import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class CountAggregationOnKind {
  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Task";

  // Setting up Tasks in database
  private static void setUpTasks() {
    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());
  }

  // Accessing aggregation result by the generated alias.
  private static void usageWithGeneratedAlias() {
    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder().over(selectAllTasks).addAggregation(count()).build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf(
        "Total tasks (accessible from default alias) is %d",
        aggregationResult.get("property_1")); // 3
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllTasks)
            // passing 'total_count' as alias in the aggregation query.
            .addAggregation(count().as("total_count"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf("Total tasks count is %d", aggregationResult.get("total_count")); // 3
  }

  public static void invoke() {
    setUpTasks();
    usageWithGeneratedAlias();
    usageWithCustomAlias();
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))

tasks = [task1, task2]
client.put_multi(tasks)
all_tasks_query = client.query(kind="Task")
all_tasks_count_query = client.aggregation_query(all_tasks_query).count()
query_result = all_tasks_count_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total tasks (accessible from default alias) is {aggregation.value}")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithCount("total_tasks")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["total_tasks"]
countValue := count.(*datastorepb.Value)
fmt.Printf("Number of results from query: %d\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT(*) AS total OVER ( SELECT * AS total FROM tasks )

O GQL aceita uma forma simplificada de consultas count():

SELECT COUNT(*) AS total FROM tasks

Este exemplo usa um alias opcional de total.

O formulário simplificado é compatível apenas com FROM e WHERE cláusulas. Consulte a referência sobre GQL para mais informações.

A agregação count() considera todos os filtros na consulta e todas as cláusulas limit. Por exemplo, a agregação a seguir retorna uma contagem de o número de entidades que correspondem aos filtros fornecidos.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class CountAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Task";

    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());

    EntityQuery completedTasks =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("done", true))
            .build();
    EntityQuery remainingTasks =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("done", false))
            .build();
    // Creating an aggregation query to get the count of all completed tasks.
    AggregationQuery completedTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(completedTasks)
            .addAggregation(count().as("total_completed_count"))
            .build();
    // Creating an aggregation query to get the count of all remaining tasks.
    AggregationQuery remainingTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(remainingTasks)
            .addAggregation(count().as("total_remaining_count"))
            .build();

    // Executing aggregation query.
    AggregationResult completedTasksCountQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(completedTasksCountQuery));
    AggregationResult remainingTasksCountQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(remainingTasksCountQuery));

    System.out.printf(
        "Total completed tasks count is %d",
        completedTasksCountQueryResult.get("total_completed_count")); // 2
    System.out.printf(
        "Total remaining tasks count is %d",
        remainingTasksCountQueryResult.get("total_remaining_count")); // 1
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))
task3 = datastore.Entity(client.key("Task", "task3"))

task1["done"] = True
task2["done"] = False
task3["done"] = True

tasks = [task1, task2, task3]
client.put_multi(tasks)
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
remaining_tasks = client.query(kind="Task").add_filter("done", "=", False)

completed_tasks_query = client.aggregation_query(query=completed_tasks).count(
    alias="total_completed_count"
)
remaining_tasks_query = client.aggregation_query(query=remaining_tasks).count(
    alias="total_remaining_count"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_count":
            print(f"Total completed tasks count is {aggregation_result.value}")

remaining_query_result = remaining_tasks_query.fetch()
for aggregation_results in remaining_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_remaining_count":
            print(f"Total remaining tasks count is {aggregation_result.value}")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  FilterField("done", "=", true).
  NewAggregationQuery().
  WithCount("total_tasks_done")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["total_tasks_done"]
countValue := count.(*datastorepb.Value)
fmt.Printf("Number of results from query: %d\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT(*) OVER ( SELECT * FROM tasks WHERE is_done = false AND tag = 'house')

O GQL aceita uma forma simplificada de consultas count():

SELECT COUNT(*) AS total
FROM tasks
WHERE is_done = false AND tag = 'house'

Neste exemplo, usamos um alias opcional de total.

O formulário simplificado aceita apenas cláusulas FROM e WHERE. Consulte a referência do GQL para mais informações.

Este exemplo mostra como contar até um determinado valor. Você pode usar isso para, por exemplo, parar de contar em um determinado número e informar aos usuários que eles ultrapassaram esse número.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class CountAggregationWithLimit {
  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Task";

    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());

    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).setLimit(2).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllTasks)
            .addAggregation(count().as("at_least"))
            .build();
    // Executing aggregation query.
    AggregationResult limitQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf("We have at least %d tasks", limitQueryResult.get("at_least")); // 2
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))
task3 = datastore.Entity(client.key("Task", "task3"))

tasks = [task1, task2, task3]
client.put_multi(tasks)
all_tasks_query = client.query(kind="Task")
all_tasks_count_query = client.aggregation_query(all_tasks_query).count()
query_result = all_tasks_count_query.fetch(limit=2)
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"We have at least {aggregation.value} tasks")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  Limit(2).
  NewAggregationQuery().
  WithCount("at_least")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["at_least"]
countValue := count.(*datastorepb.Value)
fmt.Printf("We have at least %d tasks\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT_UP_TO(1000) OVER ( SELECT * FROM tasks WHERE is_done = false)

O GQL oferece suporte a uma forma simplificada de consultas count_up_to():

SELECT COUNT_UP_TO(1000) AS total
FROM tasks
WHERE is_done = false AND tag = 'house'

Neste exemplo, usamos um alias opcional de total.

O formulário simplificado aceita apenas cláusulas FROM e WHERE. Consulte a referência sobre GQL para mais informações.

Agregação de sum()

Use a agregação sum() para retornar a soma total dos valores numéricos correspondentes. em uma determinada consulta. Por exemplo, a agregação sum() a seguir retorna a soma total dos valores numéricos da propriedade especificada de entidades do tipo especificado:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class SumAggregationOnKind {

  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Sales";

  // Setting up Sales in database
  private static void setUpSales() {
    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).build());
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllSales = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the sum of all sales.
    AggregationQuery sumOfSalesQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllSales)
            // passing 'total_sales_amount' as alias in the aggregation query.
            .addAggregation(sum("amount").as("total_sales_amount"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(sumOfSalesQuery));

    System.out.printf("Total sales is %d", aggregationResult.getLong("total_sales_amount")); // 239
  }

  public static void invoke() {
    setUpSales();
    usageWithCustomAlias();
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute sum aggregation query
all_tasks_query = client.query(kind="Task")
all_tasks_sum_query = client.aggregation_query(all_tasks_query).sum("hours")
query_result = all_tasks_sum_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total sum of hours in tasks is {aggregation.value}")
Go
aggregationSumQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithSum("hours", "total_hours")
sumResults, err := client.RunAggregationQuery(ctx, aggregationSumQuery)

sum := sumResults["total_hours"]
sumValue := sum.(*datastorepb.Value)
fmt.Printf("Sum of results from query: %d\n", sumValue.GetIntegerValue())
GQL
AGGREGATE
  SUM(hours) AS total_hours
OVER (
  SELECT *
  FROM tasks
)

O GQL oferece suporte a uma forma simplificada de consultas sum():

SELECT SUM(hours) AS total_hours FROM tasks

Este exemplo usa um alias opcional de total_hours.

O formulário simplificado aceita apenas cláusulas FROM e WHERE. Consulte a referência sobre GQL para mais informações.

A agregação sum() considera todos os filtros na consulta e todas as cláusulas limit. Por exemplo, a agregação a seguir retorna uma soma de a propriedade especificada com um valor numérico em entidades que correspondem à determinada filtros.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class SumAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery customer1Sales =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("customerId", 1))
            .build();

    // Creating an aggregation query to get the sum of all sales for customerId 1.
    AggregationQuery customer1SalesSum =
        Query.newAggregationQueryBuilder()
            .over(customer1Sales)
            .addAggregation(sum("amount").as("total_sales"))
            .build();

    // Executing aggregation query.
    AggregationResult customer1SalesSumQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(customer1SalesSum));

    System.out.printf(
        "Customer 1 sales sum is %d", customer1SalesSumQueryResult.getLong("total_sales")); // 184
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

task1["done"] = True
task2["done"] = True
task3["done"] = False

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute sum aggregation query with filters
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
completed_tasks_query = client.aggregation_query(query=completed_tasks).sum(
    property_ref="hours", alias="total_completed_sum_hours"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_sum_hours":
            print(
                f"Total sum of hours in completed tasks is {aggregation_result.value}"
            )

Essa consulta requer um índice, como:

- kind: Task
  properties:
  - name: done
  - name: hours
Go
aggregationSumQuery := datastore.NewQuery("Task").
  FilterField("done", "=", false).
  FilterField("tag", "=", "house").
  NewAggregationQuery().
  WithSum("hours", "total_hours")
sumResults, err := client.RunAggregationQuery(ctx, aggregationSumQuery)

sum := sumResults["total_hours"]
sumValue := sum.(*datastorepb.Value)
fmt.Printf("Sum of results from query: %d\n", sumValue.GetIntegerValue())
GQL
AGGREGATE
  SUM(hours) AS total_hours
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

O GQL oferece suporte a uma forma simplificada de consultas sum():

SELECT
  SUM(hours) AS total_hours
FROM tasks
WHERE is_done = false AND tag = 'house'

Este exemplo usa um alias opcional de total_hours.

O formulário simplificado aceita apenas cláusulas FROM e WHERE. Consulte a referência do GQL para mais informações.

Agregação de avg()

Use a agregação avg() para retornar a média dos valores numéricos que correspondem a uma determinada consulta. Por exemplo, o avg() a seguir agregação retorna o valor aritmético média da propriedade especificada a partir dos valores de propriedade numéricos das entidades que correspondem à consulta:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class AvgAggregationOnKind {

  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Sales";

  // Setting up Sales in database
  private static void setUpSales() {
    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).build());
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllSales = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the avg of all sales.
    AggregationQuery avgOfSalesQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllSales)
            // passing 'avg_sales_amount' as alias in the aggregation query.
            .addAggregation(avg("amount").as("avg_sales_amount"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(avgOfSalesQuery));

    System.out.printf(
        "Average sales is %.8f", aggregationResult.getDouble("avg_sales_amount")); // 79.66666667
  }

  public static void invoke() {
    setUpSales();
    usageWithCustomAlias();
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute average aggregation query
all_tasks_query = client.query(kind="Task")
all_tasks_avg_query = client.aggregation_query(all_tasks_query).avg("hours")
query_result = all_tasks_avg_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total average of hours in tasks is {aggregation.value}")
Go
aggregationAvgQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithAvg("hours", "avg_hours")
avgResults, err := client.RunAggregationQuery(ctx, aggregationAvgQuery)

avg := avgResults["avg_hours"]
avgValue := avg.(*datastorepb.Value)
fmt.Printf("average hours: %f\n", avgValue.GetDoubleValue())
GQL
AGGREGATE
  AVG(hours) as avg_hours
OVER (
  SELECT *
  FROM tasks
)

O GQL aceita uma forma simplificada de consultas avg():

SELECT AVG(hours) as avg_hours

Este exemplo usa um alias opcional de avg_hours.

O formulário simplificado é compatível apenas com FROM e WHERE cláusulas. Consulte a referência sobre GQL para mais informações.

A agregação avg() considera todos os filtros na consulta e todas as cláusulas limit. Por exemplo, a agregação a seguir retorna o valor aritmético média da propriedade especificada a partir dos valores de propriedade numéricos das entidades que correspondem aos filtros de consulta.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class AvgAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery customer1Sales =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("customerId", 1))
            .build();

    // Creating an aggregation query to get the avg of all sales for customerId 1.
    AggregationQuery customer1SalesAvg =
        Query.newAggregationQueryBuilder()
            .over(customer1Sales)
            .addAggregation(avg("amount").as("total_sales"))
            .build();

    // Executing aggregation query.
    AggregationResult customer1SalesAvgQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(customer1SalesAvg));

    System.out.printf(
        "Customer 1 sales avg is %d", customer1SalesAvgQueryResult.getLong("total_sales")); // 92
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

task1["done"] = True
task2["done"] = True
task3["done"] = False

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute average aggregation query with filters
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
completed_tasks_query = client.aggregation_query(query=completed_tasks).avg(
    property_ref="hours", alias="total_completed_avg_hours"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_avg_hours":
            print(
                f"Total average of hours in completed tasks is {aggregation_result.value}"
            )

Essa consulta requer um índice, como:

- kind: Task
  properties:
  - name: done
  - name: hours
Go
aggregationAvgQuery := datastore.NewQuery("Task").
  FilterField("done", "=", false).
  FilterField("tag", "=", "house").
  NewAggregationQuery().
  WithAvg("hours", "avg_hours")
avgResults, err := client.RunAggregationQuery(ctx, aggregationAvgQuery)

avg := avgResults["avg_hours"]
avgValue := avg.(*datastorepb.Value)
fmt.Printf("average hours: %f\n", avgValue.GetDoubleValue())
GQL
AGGREGATE
  AVG(hours) as avg_hours
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

O GQL aceita uma forma simplificada de consultas avg():

SELECT
  AVG(hours) as avg_hours
FROM tasks
WHERE is_done = false AND tag = 'house'

Este exemplo usa um alias opcional de avg_hours.

O formulário simplificado aceita apenas cláusulas FROM e WHERE. Consulte a referência sobre GQL para mais informações.

Calcular várias agregações em uma consulta

É possível combinar várias agregações em um único pipeline de agregação. Isso pode reduzir o número de leituras de índice necessárias. Se a consulta incluir agregações em vários campos, a consulta exige um índice composto, e cada agregação cálculo inclui apenas as entidades que contêm todos os campos usados pelo cada agregação.

O exemplo a seguir executa várias agregações em uma única consulta de agregação:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;
import static com.google.cloud.datastore.aggregation.Aggregation.count;
import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class MultipleAggregationsInStructuredQuery {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery baseQuery = Query.newEntityQueryBuilder().setKind(kind).build();

    // Creating an aggregation query with COUNT, SUM and AVG aggregations.
    AggregationQuery aggregationQuery =
        Query.newAggregationQueryBuilder()
            .over(baseQuery)
            .addAggregation(count().as("total_count"))
            .addAggregation(sum("amount").as("sales_sum"))
            .addAggregation(avg("amount").as("sales_avg"))
            .build();

    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(aggregationQuery));

    System.out.printf("Total sales count: %d", aggregationResult.getLong("total_count")); // 3
    System.out.printf("Sum of sales: %d", aggregationResult.getLong("sales_sum")); // 239
    System.out.printf(
        "Avg of sales: %.8f", aggregationResult.getDouble("sales_avg")); // 79.66666667
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute query with multiple aggregations
all_tasks_query = client.query(kind="Task")
aggregation_query = client.aggregation_query(all_tasks_query)
# Add aggregations
aggregation_query.add_aggregations(
    [
        datastore.aggregation.CountAggregation(alias="count_aggregation"),
        datastore.aggregation.SumAggregation(
            property_ref="hours", alias="sum_aggregation"
        ),
        datastore.aggregation.AvgAggregation(
            property_ref="hours", alias="avg_aggregation"
        ),
    ]
)

query_result = aggregation_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"{aggregation.alias} value is {aggregation.value}")
Go
aggregationQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithCount("total_tasks").
  WithSum("hours", "total_hours").
  WithAvg("hours", "avg_hours")
Results, err := client.RunAggregationQuery(ctx, aggregationQuery)

fmt.Printf("Number of results from query: %d\n", Results["total_tasks"].(*datastorepb.Value).GetIntegerValue())
fmt.Printf("Sum of results from query: %d\n", Results["total_hours"].(*datastorepb.Value).GetIntegerValue())
fmt.Printf("Avg of results from query: %f\n", Results["avg_hours"].(*datastorepb.Value).GetDoubleValue())
GQL
AGGREGATE 
  SUM(hours) AS total_hours, 
  COUNT(*) AS total_tasks
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

O GQL oferece suporte a um formulário simplificado para consultas de agregação:

SELECT
  SUM(hours) AS total_hours,
  COUNT(*) AS total_tasks
FROM tasks
WHERE is_done = false AND tag = 'house'

Este exemplo usa os aliases opcionais de total_hours e total_tasks.

O formulário simplificado aceita apenas cláusulas FROM e WHERE. Consulte a referência sobre GQL para mais informações.

Consultas com várias agregações incluem apenas as entidades que contêm todas as propriedades em cada agregação. Isso pode levar a resultados diferentes da execução de cada agregação separadamente.

Comportamento e limitações

Ao trabalhar com consultas de agregação, considere os seguintes comportamentos e limitações:

  • A consulta que você fornece à agregação precisa atender às restrições em consultas.
  • Se uma consulta de agregação não puder ser resolvida em até 60 segundos, ela retornará um DEADLINE_EXCEEDED erro. O desempenho depende da configuração do índice e do tamanho do conjunto de dados.

    Se a operação não puder ser concluída dentro do prazo de 60 segundos, uma alternativa possível é usar cursores para mesclar várias agregações.

  • As consultas de agregação leem as entradas de índice e incluem apenas propriedades indexadas no cálculo.

  • Adicionar uma cláusula OrderBy à consulta limita a agregação ao entidades em que a propriedade de classificação existe.

  • No GQL, o formulário simplificado não oferece suporte a cláusulas ORDER BY, LIMIT ou OFFSET.

  • Em uma consulta de projeção, só é possível agregar dados das propriedades. na projeção. Por exemplo, na consulta GQL SELECT a, b FROM k WHERE c = 1, só é possível agregar dados entre a ou b.

  • Uma agregação count() não remove entidades duplicadas com propriedades de matriz. Cada valor de matriz que corresponde à consulta adiciona um à contagem.

  • Nas agregações sum() e avg(), os valores não numéricos são ignorados. sum() e a agregação avg() considera apenas valores inteiros, valores numéricos de ponto flutuante e carimbos de data/hora. As marcações de tempo são convertido em valores inteiros de microssegundos para sum(), avg(), e projeções.

  • Ao combinar várias agregações em uma única consulta, sum() e avg() ignoram valores não numéricos, enquanto count() inclui valores não numéricos.

  • Se você combinar agregações que estão em propriedades diferentes, o cálculo inclui apenas as entidades que contêm todas essas propriedades. Isso pode levar a resultados diferentes com a execução de cada agregação separadamente.

Preços

O preço das consultas de agregação count(), sum() e avg() depende o número de entradas de índice verificadas durante a operação. É cobrada uma leitura de entidade para até 1.000 entradas de índice correspondentes. As entradas de índice subsequentes corresponderam a unidades de leitura adicionais. Há um custo mínimo de uma unidade de leitura para cada consulta. Para preços informações, consulte Preços do Firestore no modo Datastore.

Se você combinar várias agregações em uma única consulta, ela usará a mesma para cada agregação e faz uma única verificação dos dados. Isso pode ajudar a reduzir o número de leituras e verificações de índice cobrado em comparação com a execução de cada agregação separadamente. No entanto, as consultas com várias agregações incluem apenas as entidades que contêm todas essas propriedades. Isso pode levar a resultados diferentes da execução de cada agregação separadamente.

A seguir