Requêtes d'agrégation

Une requête d'agrégation traite les données de plusieurs entités indexées pour renvoyer une seule valeur récapitulative. Firestore en mode Datastore accepte les requêtes d'agrégation suivantes:

  • count()
  • sum()
  • avg()

Les requêtes d'agrégation simplifient le code de votre application et coûtent moins cher que de récupérer chaque entité pour le traitement. Consultez cette page pour découvrir comment utiliser les requêtes d'agrégation.

Agrégation count()

Utilisez l'agrégation count() pour renvoyer le nombre total d'entités indexées correspondant à une requête donnée. Par exemple, cette agrégation count() renvoie le nombre total d'entités d'un type.

Java
import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class CountAggregationOnKind {
  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Task";

  // Setting up Tasks in database
  private static void setUpTasks() {
    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());
  }

  // Accessing aggregation result by the generated alias.
  private static void usageWithGeneratedAlias() {
    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder().over(selectAllTasks).addAggregation(count()).build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf(
        "Total tasks (accessible from default alias) is %d",
        aggregationResult.get("property_1")); // 3
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllTasks)
            // passing 'total_count' as alias in the aggregation query.
            .addAggregation(count().as("total_count"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf("Total tasks count is %d", aggregationResult.get("total_count")); // 3
  }

  public static void invoke() {
    setUpTasks();
    usageWithGeneratedAlias();
    usageWithCustomAlias();
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))

tasks = [task1, task2]
client.put_multi(tasks)
all_tasks_query = client.query(kind="Task")
all_tasks_count_query = client.aggregation_query(all_tasks_query).count()
query_result = all_tasks_count_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total tasks (accessible from default alias) is {aggregation.value}")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithCount("total_tasks")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["total_tasks"]
countValue := count.(*datastorepb.Value)
fmt.Printf("Number of results from query: %d\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT(*) AS total OVER ( SELECT * AS total FROM tasks )

GQL accepte une forme simplifiée des requêtes count():

SELECT COUNT(*) AS total FROM tasks

Cet exemple utilise un alias facultatif de total.

La forme simplifiée n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

L'agrégation count() tient compte de tous les filtres de la requête et de toutes les clauses limit. Par exemple, l'agrégation suivante renvoie le nombre d'entités correspondant aux filtres donnés.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class CountAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Task";

    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());

    EntityQuery completedTasks =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("done", true))
            .build();
    EntityQuery remainingTasks =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("done", false))
            .build();
    // Creating an aggregation query to get the count of all completed tasks.
    AggregationQuery completedTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(completedTasks)
            .addAggregation(count().as("total_completed_count"))
            .build();
    // Creating an aggregation query to get the count of all remaining tasks.
    AggregationQuery remainingTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(remainingTasks)
            .addAggregation(count().as("total_remaining_count"))
            .build();

    // Executing aggregation query.
    AggregationResult completedTasksCountQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(completedTasksCountQuery));
    AggregationResult remainingTasksCountQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(remainingTasksCountQuery));

    System.out.printf(
        "Total completed tasks count is %d",
        completedTasksCountQueryResult.get("total_completed_count")); // 2
    System.out.printf(
        "Total remaining tasks count is %d",
        remainingTasksCountQueryResult.get("total_remaining_count")); // 1
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))
task3 = datastore.Entity(client.key("Task", "task3"))

task1["done"] = True
task2["done"] = False
task3["done"] = True

tasks = [task1, task2, task3]
client.put_multi(tasks)
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
remaining_tasks = client.query(kind="Task").add_filter("done", "=", False)

completed_tasks_query = client.aggregation_query(query=completed_tasks).count(
    alias="total_completed_count"
)
remaining_tasks_query = client.aggregation_query(query=remaining_tasks).count(
    alias="total_remaining_count"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_count":
            print(f"Total completed tasks count is {aggregation_result.value}")

remaining_query_result = remaining_tasks_query.fetch()
for aggregation_results in remaining_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_remaining_count":
            print(f"Total remaining tasks count is {aggregation_result.value}")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  FilterField("done", "=", true).
  NewAggregationQuery().
  WithCount("total_tasks_done")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["total_tasks_done"]
countValue := count.(*datastorepb.Value)
fmt.Printf("Number of results from query: %d\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT(*) OVER ( SELECT * FROM tasks WHERE is_done = false AND tag = 'house')

GQL accepte une forme simplifiée des requêtes count():

SELECT COUNT(*) AS total
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de total.

Le formulaire simplifié n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

Cet exemple montre comment compter jusqu'à une certaine valeur. Vous pouvez par exemple utiliser cette fonctionnalité pour arrêter le comptage à un certain nombre et informer les utilisateurs qu'ils ont dépassé ce nombre.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.count;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class CountAggregationWithLimit {
  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Task";

    Key task1Key = datastore.newKeyFactory().setKind(kind).newKey("task1");
    Key task2Key = datastore.newKeyFactory().setKind(kind).newKey("task2");
    Key task3Key = datastore.newKeyFactory().setKind(kind).newKey("task3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(task1Key).set("done", true).build(),
        Entity.newBuilder(task2Key).set("done", false).build(),
        Entity.newBuilder(task3Key).set("done", true).build());

    EntityQuery selectAllTasks = Query.newEntityQueryBuilder().setKind(kind).setLimit(2).build();
    // Creating an aggregation query to get the count of all tasks.
    AggregationQuery allTasksCountQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllTasks)
            .addAggregation(count().as("at_least"))
            .build();
    // Executing aggregation query.
    AggregationResult limitQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(allTasksCountQuery));

    System.out.printf("We have at least %d tasks", limitQueryResult.get("at_least")); // 2
  }
}
Python
task1 = datastore.Entity(client.key("Task", "task1"))
task2 = datastore.Entity(client.key("Task", "task2"))
task3 = datastore.Entity(client.key("Task", "task3"))

tasks = [task1, task2, task3]
client.put_multi(tasks)
all_tasks_query = client.query(kind="Task")
all_tasks_count_query = client.aggregation_query(all_tasks_query).count()
query_result = all_tasks_count_query.fetch(limit=2)
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"We have at least {aggregation.value} tasks")
Go
aggregationCountQuery := datastore.NewQuery("Task").
  Limit(2).
  NewAggregationQuery().
  WithCount("at_least")

countResults, err := client.RunAggregationQuery(ctx, aggregationCountQuery)

count := countResults["at_least"]
countValue := count.(*datastorepb.Value)
fmt.Printf("We have at least %d tasks\n", countValue.GetIntegerValue())
GQL
AGGREGATE COUNT_UP_TO(1000) OVER ( SELECT * FROM tasks WHERE is_done = false)

GQL accepte une forme simplifiée des requêtes count_up_to():

SELECT COUNT_UP_TO(1000) AS total
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de total.

Le formulaire simplifié n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

Agrégation sum()

Utilisez l'agrégation sum() pour renvoyer la somme totale des valeurs numériques correspondant à une requête donnée. Par exemple, l'agrégation sum() suivante renvoie la somme totale des valeurs numériques de la propriété donnée à partir des entités du type donné:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class SumAggregationOnKind {

  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Sales";

  // Setting up Sales in database
  private static void setUpSales() {
    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).build());
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllSales = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the sum of all sales.
    AggregationQuery sumOfSalesQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllSales)
            // passing 'total_sales_amount' as alias in the aggregation query.
            .addAggregation(sum("amount").as("total_sales_amount"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(sumOfSalesQuery));

    System.out.printf("Total sales is %d", aggregationResult.getLong("total_sales_amount")); // 239
  }

  public static void invoke() {
    setUpSales();
    usageWithCustomAlias();
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute sum aggregation query
all_tasks_query = client.query(kind="Task")
all_tasks_sum_query = client.aggregation_query(all_tasks_query).sum("hours")
query_result = all_tasks_sum_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total sum of hours in tasks is {aggregation.value}")
Go
aggregationSumQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithSum("hours", "total_hours")
sumResults, err := client.RunAggregationQuery(ctx, aggregationSumQuery)

sum := sumResults["total_hours"]
sumValue := sum.(*datastorepb.Value)
fmt.Printf("Sum of results from query: %d\n", sumValue.GetIntegerValue())
GQL
AGGREGATE
  SUM(hours) AS total_hours
OVER (
  SELECT *
  FROM tasks
)

GQL accepte une forme simplifiée des requêtes sum():

SELECT SUM(hours) AS total_hours FROM tasks

Cet exemple utilise un alias facultatif de total_hours.

La forme simplifiée n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

L'agrégation sum() tient compte de tous les filtres de la requête et de toutes les clauses limit. Par exemple, l'agrégation suivante renvoie la somme de la propriété spécifiée avec une valeur numérique dans les entités correspondant aux filtres donnés.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class SumAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery customer1Sales =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("customerId", 1))
            .build();

    // Creating an aggregation query to get the sum of all sales for customerId 1.
    AggregationQuery customer1SalesSum =
        Query.newAggregationQueryBuilder()
            .over(customer1Sales)
            .addAggregation(sum("amount").as("total_sales"))
            .build();

    // Executing aggregation query.
    AggregationResult customer1SalesSumQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(customer1SalesSum));

    System.out.printf(
        "Customer 1 sales sum is %d", customer1SalesSumQueryResult.getLong("total_sales")); // 184
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

task1["done"] = True
task2["done"] = True
task3["done"] = False

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute sum aggregation query with filters
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
completed_tasks_query = client.aggregation_query(query=completed_tasks).sum(
    property_ref="hours", alias="total_completed_sum_hours"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_sum_hours":
            print(
                f"Total sum of hours in completed tasks is {aggregation_result.value}"
            )

Cette requête nécessite un indice tel que:

- kind: Task
  properties:
  - name: done
  - name: hours
Go
aggregationSumQuery := datastore.NewQuery("Task").
  FilterField("done", "=", false).
  FilterField("tag", "=", "house").
  NewAggregationQuery().
  WithSum("hours", "total_hours")
sumResults, err := client.RunAggregationQuery(ctx, aggregationSumQuery)

sum := sumResults["total_hours"]
sumValue := sum.(*datastorepb.Value)
fmt.Printf("Sum of results from query: %d\n", sumValue.GetIntegerValue())
GQL
AGGREGATE
  SUM(hours) AS total_hours
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

GQL accepte une forme simplifiée des requêtes sum():

SELECT
  SUM(hours) AS total_hours
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de total_hours.

La forme simplifiée n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

Agrégation avg()

Utilisez l'agrégation avg() pour renvoyer la moyenne des valeurs numériques correspondant à une requête donnée. Par exemple, l'agrégation avg() suivante renvoie la moyenne arithmétique de la propriété spécifiée à partir des valeurs numériques de la propriété des entités correspondant à la requête:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class AvgAggregationOnKind {

  // Instantiates a client.
  private static final Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

  // The kind for the new entity.
  private static final String kind = "Sales";

  // Setting up Sales in database
  private static void setUpSales() {
    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).build());
  }

  // Accessing aggregation result by the provided custom alias.
  private static void usageWithCustomAlias() {
    EntityQuery selectAllSales = Query.newEntityQueryBuilder().setKind(kind).build();
    // Creating an aggregation query to get the avg of all sales.
    AggregationQuery avgOfSalesQuery =
        Query.newAggregationQueryBuilder()
            .over(selectAllSales)
            // passing 'avg_sales_amount' as alias in the aggregation query.
            .addAggregation(avg("amount").as("avg_sales_amount"))
            .build();
    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(avgOfSalesQuery));

    System.out.printf(
        "Average sales is %.8f", aggregationResult.getDouble("avg_sales_amount")); // 79.66666667
  }

  public static void invoke() {
    setUpSales();
    usageWithCustomAlias();
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute average aggregation query
all_tasks_query = client.query(kind="Task")
all_tasks_avg_query = client.aggregation_query(all_tasks_query).avg("hours")
query_result = all_tasks_avg_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"Total average of hours in tasks is {aggregation.value}")
Go
aggregationAvgQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithAvg("hours", "avg_hours")
avgResults, err := client.RunAggregationQuery(ctx, aggregationAvgQuery)

avg := avgResults["avg_hours"]
avgValue := avg.(*datastorepb.Value)
fmt.Printf("average hours: %f\n", avgValue.GetDoubleValue())
GQL
AGGREGATE
  AVG(hours) as avg_hours
OVER (
  SELECT *
  FROM tasks
)

GQL accepte une forme simplifiée des requêtes avg():

SELECT AVG(hours) as avg_hours

Cet exemple utilise un alias facultatif de avg_hours.

La forme simplifiée n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

L'agrégation avg() tient compte de tous les filtres de la requête et de toutes les clauses limit. Par exemple, l'agrégation suivante renvoie la moyenne arithmétique de la propriété spécifiée à partir des valeurs numériques de la propriété des entités correspondant aux filtres de requête.

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.cloud.datastore.StructuredQuery.PropertyFilter;
import com.google.common.collect.Iterables;

public class AvgAggregationWithPropertyFilter {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the tasks.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery customer1Sales =
        Query.newEntityQueryBuilder()
            .setKind(kind)
            .setFilter(PropertyFilter.eq("customerId", 1))
            .build();

    // Creating an aggregation query to get the avg of all sales for customerId 1.
    AggregationQuery customer1SalesAvg =
        Query.newAggregationQueryBuilder()
            .over(customer1Sales)
            .addAggregation(avg("amount").as("total_sales"))
            .build();

    // Executing aggregation query.
    AggregationResult customer1SalesAvgQueryResult =
        Iterables.getOnlyElement(datastore.runAggregation(customer1SalesAvg));

    System.out.printf(
        "Customer 1 sales avg is %d", customer1SalesAvgQueryResult.getLong("total_sales")); // 92
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

task1["done"] = True
task2["done"] = True
task3["done"] = False

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute average aggregation query with filters
completed_tasks = client.query(kind="Task").add_filter("done", "=", True)
completed_tasks_query = client.aggregation_query(query=completed_tasks).avg(
    property_ref="hours", alias="total_completed_avg_hours"
)

completed_query_result = completed_tasks_query.fetch()
for aggregation_results in completed_query_result:
    for aggregation_result in aggregation_results:
        if aggregation_result.alias == "total_completed_avg_hours":
            print(
                f"Total average of hours in completed tasks is {aggregation_result.value}"
            )

Cette requête nécessite un indice tel que:

- kind: Task
  properties:
  - name: done
  - name: hours
Go
aggregationAvgQuery := datastore.NewQuery("Task").
  FilterField("done", "=", false).
  FilterField("tag", "=", "house").
  NewAggregationQuery().
  WithAvg("hours", "avg_hours")
avgResults, err := client.RunAggregationQuery(ctx, aggregationAvgQuery)

avg := avgResults["avg_hours"]
avgValue := avg.(*datastorepb.Value)
fmt.Printf("average hours: %f\n", avgValue.GetDoubleValue())
GQL
AGGREGATE
  AVG(hours) as avg_hours
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

GQL accepte une forme simplifiée des requêtes avg():

SELECT
  AVG(hours) as avg_hours
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise un alias facultatif de avg_hours.

La forme simplifiée n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

Calculer plusieurs agrégations dans une requête

Vous pouvez combiner plusieurs agrégations dans un même pipeline d'agrégation. Cela peut réduire le nombre de lectures d'index requises. Si la requête inclut des agrégations sur plusieurs champs, elle nécessite un indice composite, et chaque calcul d'agrégation n'inclut que les entités contenant tous les champs utilisés par chaque agrégation.

L'exemple suivant effectue plusieurs agrégations dans une seule requête d'agrégation:

Java

import static com.google.cloud.datastore.aggregation.Aggregation.avg;
import static com.google.cloud.datastore.aggregation.Aggregation.count;
import static com.google.cloud.datastore.aggregation.Aggregation.sum;

import com.google.cloud.datastore.AggregationQuery;
import com.google.cloud.datastore.AggregationResult;
import com.google.cloud.datastore.Datastore;
import com.google.cloud.datastore.DatastoreOptions;
import com.google.cloud.datastore.Entity;
import com.google.cloud.datastore.EntityQuery;
import com.google.cloud.datastore.Key;
import com.google.cloud.datastore.Query;
import com.google.common.collect.Iterables;

public class MultipleAggregationsInStructuredQuery {

  public static void invoke() {
    // Instantiates a client.
    Datastore datastore = DatastoreOptions.getDefaultInstance().getService();

    // The kind for the new entity.
    String kind = "Sales";

    Key sales1Key = datastore.newKeyFactory().setKind(kind).newKey("sales1");
    Key sales2Key = datastore.newKeyFactory().setKind(kind).newKey("sales2");
    Key sales3Key = datastore.newKeyFactory().setKind(kind).newKey("sales3");

    // Save all the sales.
    datastore.put(
        Entity.newBuilder(sales1Key).set("amount", 89).set("customerId", 1).build(),
        Entity.newBuilder(sales2Key).set("amount", 95).set("customerId", 1).build(),
        Entity.newBuilder(sales3Key).set("amount", 55).set("customerId", 2).build());

    EntityQuery baseQuery = Query.newEntityQueryBuilder().setKind(kind).build();

    // Creating an aggregation query with COUNT, SUM and AVG aggregations.
    AggregationQuery aggregationQuery =
        Query.newAggregationQueryBuilder()
            .over(baseQuery)
            .addAggregation(count().as("total_count"))
            .addAggregation(sum("amount").as("sales_sum"))
            .addAggregation(avg("amount").as("sales_avg"))
            .build();

    // Executing aggregation query.
    AggregationResult aggregationResult =
        Iterables.getOnlyElement(datastore.runAggregation(aggregationQuery));

    System.out.printf("Total sales count: %d", aggregationResult.getLong("total_count")); // 3
    System.out.printf("Sum of sales: %d", aggregationResult.getLong("sales_sum")); // 239
    System.out.printf(
        "Avg of sales: %.8f", aggregationResult.getDouble("sales_avg")); // 79.66666667
  }
}
Python
# Set up sample entities
# Use incomplete key to auto-generate ID
task1 = datastore.Entity(client.key("Task"))
task2 = datastore.Entity(client.key("Task"))
task3 = datastore.Entity(client.key("Task"))

task1["hours"] = 5
task2["hours"] = 3
task3["hours"] = 1

tasks = [task1, task2, task3]
client.put_multi(tasks)

# Execute query with multiple aggregations
all_tasks_query = client.query(kind="Task")
aggregation_query = client.aggregation_query(all_tasks_query)
# Add aggregations
aggregation_query.add_aggregations(
    [
        datastore.aggregation.CountAggregation(alias="count_aggregation"),
        datastore.aggregation.SumAggregation(
            property_ref="hours", alias="sum_aggregation"
        ),
        datastore.aggregation.AvgAggregation(
            property_ref="hours", alias="avg_aggregation"
        ),
    ]
)

query_result = aggregation_query.fetch()
for aggregation_results in query_result:
    for aggregation in aggregation_results:
        print(f"{aggregation.alias} value is {aggregation.value}")
Go
aggregationQuery := datastore.NewQuery("Task").
  NewAggregationQuery().
  WithCount("total_tasks").
  WithSum("hours", "total_hours").
  WithAvg("hours", "avg_hours")
Results, err := client.RunAggregationQuery(ctx, aggregationQuery)

fmt.Printf("Number of results from query: %d\n", Results["total_tasks"].(*datastorepb.Value).GetIntegerValue())
fmt.Printf("Sum of results from query: %d\n", Results["total_hours"].(*datastorepb.Value).GetIntegerValue())
fmt.Printf("Avg of results from query: %f\n", Results["avg_hours"].(*datastorepb.Value).GetDoubleValue())
GQL
AGGREGATE 
  SUM(hours) AS total_hours, 
  COUNT(*) AS total_tasks
OVER (
  SELECT *
  FROM tasks
  WHERE is_done = false AND tag = 'house'
)

GQL propose une forme simplifiée pour les requêtes d'agrégation:

SELECT
  SUM(hours) AS total_hours,
  COUNT(*) AS total_tasks
FROM tasks
WHERE is_done = false AND tag = 'house'

Cet exemple utilise les alias facultatifs total_hours et total_tasks.

La forme simplifiée n'est compatible qu'avec les clauses FROM et WHERE. Pour en savoir plus, consultez la documentation de référence sur GQL.

Les requêtes avec plusieurs agrégations n'incluent que les entités qui contiennent toutes les propriétés de chaque agrégation. Cela peut entraîner des résultats différents de ceux obtenus en effectuant chaque agrégation séparément.

Comportement et limites

Lorsque vous travaillez avec des requêtes d'agrégation, tenez compte des comportements et des limites suivants:

  • La requête que vous fournissez à l'agrégation doit respecter les restrictions au niveau des requêtes.
  • Si une requête d'agrégation ne peut pas être résolue sous 60 secondes, une erreur DEADLINE_EXCEEDED est renvoyée. Les performances dépendent de la configuration de votre index et de la taille de l'ensemble de données.

    Si l'opération ne peut pas être effectuée dans le délai de 60 secondes, vous pouvez utiliser des curseurs pour fusionner plusieurs agrégations.

  • Les requêtes d'agrégation lisent les entrées d'index et n'incluent que les propriétés indexées dans le calcul.

  • L'ajout d'une clause OrderBy à la requête limite l'agrégation aux entités où la propriété de tri existe.

  • En GQL, la forme simplifiée n'est pas compatible avec les clauses ORDER BY, LIMIT ou OFFSET.

  • Dans une requête de projection, vous ne pouvez agréger les données que des propriétés de la projection. Par exemple, dans la requête GQL SELECT a, b FROM k WHERE c = 1, vous ne pouvez agréger des données qu'à partir de a ou b.

  • Une agrégation count() ne déduplique pas les entités avec des propriétés de tableau. Chaque valeur du tableau correspondant à la requête ajoute un à la valeur du compteur.

  • Pour les agrégations sum() et avg(), les valeurs non numériques sont ignorées. L'agrégation sum() et avg() ne prend en compte que les valeurs entières, les valeurs à virgule flottante et les codes temporels. Les codes temporels sont convertis en valeurs entières de microsecondes pour sum(), avg() et les projections.

  • Lorsque vous combinez plusieurs agrégations dans une seule requête, notez que sum() et avg() ignorent les valeurs non numériques, tandis que count() les inclut.

  • Si vous combinez des agrégations sur différentes propriétés, le calcul n'inclut que les entités qui contiennent toutes ces propriétés. Cela peut entraîner des résultats différents de ceux obtenus en effectuant chaque agrégation séparément.

Tarifs

Le tarif des requêtes d'agrégation count(), sum() et avg() dépend du nombre d'entrées d'index analysées lors de l'opération. Une opération de lecture d'entité vous est facturée pour un maximum de 1 000 entrées d'index correspondant. Les entrées d'index ultérieures correspondant à des unités de lecture supplémentaires. Un coût minimal d'une unité de lecture vous est facturé pour chaque requête. Pour en savoir plus sur les tarifs, consultez la section Tarifs de Firestore en mode Datastore.

Si vous combinez plusieurs agrégations dans une seule requête, la requête utilise le même indice pour chaque agrégation et effectue une seule analyse des données. Cela peut vous aider à réduire le nombre d'analyses d'index et de lectures facturées par rapport à l'exécution de chaque agrégation séparément. Toutefois, les requêtes avec plusieurs agrégations n'incluent que les entités qui contiennent toutes ces propriétés. Cela peut donner des résultats différents de ceux obtenus en effectuant chaque agrégation séparément.

Étape suivante