Escribe desde Dataflow hasta Apache Iceberg

Para escribir desde Dataflow en Apache Iceberg, usa el conector de E/S administrado.

La E/S administrada admite las siguientes capacidades para Apache Iceberg:

Catálogos
  • Hadoop
  • Hive
  • Catálogos basados en REST
  • Metastore de BigQuery (requiere el SDK de Apache Beam 2.62.0 o posterior si no se usa Runner v2)
Capacidades de lectura Lectura por lotes
Capacidades de escritura

Para las tablas de BigQuery para Apache Iceberg, usa el conector de BigQueryIO con la API de BigQuery Storage. La tabla ya debe existir, ya que no se admite la creación de tablas dinámicas.

Dependencias

Agrega las siguientes dependencias a tu proyecto:

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

Destinos dinámicos

La E/S administrada para Apache Iceberg admite destinos dinámicos. En lugar de escribir en una sola tabla fija, el conector puede seleccionar de forma dinámica una tabla de destino según los valores de los campos dentro de los registros entrantes.

Para usar destinos dinámicos, proporciona una plantilla para el parámetro de configuración table. Para obtener más información, consulta Destinos dinámicos.

Ejemplos

En los siguientes ejemplos, se muestra cómo usar la E/S administrada para escribir en Apache Iceberg.

Escribe en una tabla de Apache Iceberg

En el siguiente ejemplo, se escriben datos JSON en la memoria en una tabla de Apache Iceberg.

Java

Para autenticarte en Dataflow, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import com.google.common.collect.ImmutableMap;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.schemas.Schema;
import org.apache.beam.sdk.transforms.Create;
import org.apache.beam.sdk.transforms.JsonToRow;
import org.apache.beam.sdk.values.PCollectionRowTuple;

public class ApacheIcebergWrite {
  static final List<String> TABLE_ROWS = Arrays.asList(
      "{\"id\":0, \"name\":\"Alice\"}",
      "{\"id\":1, \"name\":\"Bob\"}",
      "{\"id\":2, \"name\":\"Charles\"}"
  );

  static final String CATALOG_TYPE = "hadoop";

  // The schema for the table rows.
  public static final Schema SCHEMA = new Schema.Builder()
      .addStringField("name")
      .addInt64Field("id")
      .build();

  public interface Options extends PipelineOptions {
    @Description("The URI of the Apache Iceberg warehouse location")
    String getWarehouseLocation();

    void setWarehouseLocation(String value);

    @Description("The name of the Apache Iceberg catalog")
    String getCatalogName();

    void setCatalogName(String value);

    @Description("The name of the table to write to")
    String getTableName();

    void setTableName(String value);
  }

  public static void main(String[] args) {

    // Parse the pipeline options passed into the application. Example:
    //   --runner=DirectRunner --warehouseLocation=$LOCATION --catalogName=$CATALOG \
    //   --tableName= $TABLE_NAME
    // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    Pipeline pipeline = Pipeline.create(options);

    // Configure the Iceberg source I/O
    Map catalogConfig = ImmutableMap.<String, Object>builder()
        .put("warehouse", options.getWarehouseLocation())
        .put("type", CATALOG_TYPE)
        .build();

    ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()
        .put("table", options.getTableName())
        .put("catalog_name", options.getCatalogName())
        .put("catalog_properties", catalogConfig)
        .build();

    // Build the pipeline.
    pipeline.apply(Create.of(TABLE_ROWS))
        .apply(JsonToRow.withSchema(SCHEMA))
        .apply(Managed.write(Managed.ICEBERG).withConfig(config));

    pipeline.run().waitUntilFinish();
  }
}

Escribe con destinos dinámicos

En el siguiente ejemplo, se escriben datos en diferentes tablas de Apache Iceberg según un campo de los datos de entrada.

Java

Para autenticarte en Dataflow, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import com.google.common.collect.ImmutableMap;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.schemas.Schema;
import org.apache.beam.sdk.transforms.Create;
import org.apache.beam.sdk.transforms.JsonToRow;

public class ApacheIcebergDynamicDestinations {

  // The schema for the table rows.
  public static final Schema SCHEMA = new Schema.Builder()
      .addInt64Field("id")
      .addStringField("name")
      .addStringField("airport")
      .build();

  // The data to write to table, formatted as JSON strings.
  static final List<String> TABLE_ROWS = List.of(
      "{\"id\":0, \"name\":\"Alice\", \"airport\": \"ORD\" }",
      "{\"id\":1, \"name\":\"Bob\", \"airport\": \"SYD\" }",
      "{\"id\":2, \"name\":\"Charles\", \"airport\": \"ORD\" }"
  );

  public interface Options extends PipelineOptions {
    @Description("The URI of the Apache Iceberg warehouse location")
    String getWarehouseLocation();

    void setWarehouseLocation(String value);

    @Description("The name of the Apache Iceberg catalog")
    String getCatalogName();

    void setCatalogName(String value);
  }

  // Write JSON data to Apache Iceberg, using dynamic destinations to determine the Iceberg table
  // where Dataflow writes each record. The JSON data contains a field named "airport". The
  // Dataflow pipeline writes to Iceberg tables with the naming pattern "flights-{airport}".
  public static void main(String[] args) {
    // Parse the pipeline options passed into the application. Example:
    //   --runner=DirectRunner --warehouseLocation=$LOCATION --catalogName=$CATALOG \
    // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    Pipeline pipeline = Pipeline.create(options);

    // Configure the Iceberg source I/O
    Map catalogConfig = ImmutableMap.<String, Object>builder()
        .put("warehouse", options.getWarehouseLocation())
        .put("type", "hadoop")
        .build();

    ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()
        .put("catalog_name", options.getCatalogName())
        .put("catalog_properties", catalogConfig)
        // Route the incoming records based on the value of the "airport" field.
        .put("table", "flights-{airport}")
        // Specify which fields to keep from the input data.
        .put("keep", Arrays.asList("name", "id"))
        .build();

    // Build the pipeline.
    pipeline
        // Read in-memory JSON data.
        .apply(Create.of(TABLE_ROWS))
        // Convert the JSON records to Row objects.
        .apply(JsonToRow.withSchema(SCHEMA))
        // Write each Row to Apache Iceberg.
        .apply(Managed.write(Managed.ICEBERG).withConfig(config));

    // Run the pipeline.
    pipeline.run().waitUntilFinish();
  }
}

¿Qué sigue?