Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Puedes personalizar el entorno de ejecución del código de usuario en las canalizaciones
de Dataflow si proporcionas una imagen de contenedor personalizada. Los contenedores personalizados son
compatibles con las canalizaciones que usan
Runner v2 de Dataflow.
Cuando Dataflow inicia las VMs de trabajador, usa imágenes de contenedor
de Docker para iniciar los procesos del SDK alojados en contenedores en los trabajadores. De forma predeterminada, una
canalización usa una
imagen de Apache Beam compilada previamente.
Sin embargo, puedes proporcionar una imagen de contenedor personalizada para tu trabajo de Dataflow.
Cuando especificas una imagen de contenedor personalizada, Dataflow inicia los trabajadores que extraen la imagen especificada.
Puedes usar un contenedor personalizado por los siguientes motivos:
Preinstalar las dependencias de canalizaciones para reducir el tiempo de inicio de los trabajadores.
Preinstala las dependencias de canalizaciones que no están disponibles en los repositorios públicos.
Preinstala las dependencias de canalizaciones cuando se desactiva el acceso a los repositorios públicos. Es posible que el acceso esté desactivado por motivos de seguridad.
Ejecuta una etapa de pruebas de archivos grandes para reducir el tiempo de inicio de los trabajadores.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[[["\u003cp\u003eDataflow pipelines using Runner v2 support the use of custom container images to customize the runtime environment of user code.\u003c/p\u003e\n"],["\u003cp\u003eBy default, Dataflow pipelines use prebuilt Apache Beam images, but users can specify their own custom container images for their Dataflow jobs.\u003c/p\u003e\n"],["\u003cp\u003eCustom containers allow users to preinstall pipeline dependencies, including those not in public repositories, and to manage dependencies when access to public repositories is restricted.\u003c/p\u003e\n"],["\u003cp\u003eUsing custom containers also allows you to prestage large files and launch third-party software to customize the execution environment.\u003c/p\u003e\n"],["\u003cp\u003eThe main use cases of custom containers are to reduce worker start time, customize the environment, and to manage dependencies.\u003c/p\u003e\n"]]],[],null,["# Use custom containers in Dataflow\n\nYou can customize the runtime environment of user code in Dataflow\npipelines by supplying a custom container image. Custom containers are\nsupported for pipelines that use Dataflow\n[Runner v2](/dataflow/docs/runner-v2).\n\nWhen Dataflow starts up worker VMs, it uses Docker container\nimages to launch containerized SDK processes on the workers. By default, a\npipeline uses a prebuilt\n[Apache Beam image](https://hub.docker.com/search?q=apache%2Fbeam&type=image).\nHowever, you can provide a custom container image for your Dataflow job.\nWhen you specify a custom container image, Dataflow launches workers\nthat pull the specified image.\n\nYou might use a custom container for the following reasons:\n\n- Preinstall pipeline dependencies to reduce worker start time.\n- Preinstall pipeline dependencies that are not available in public repositories.\n- Preinstall pipeline dependencies when access to public repositories is turned off. Access might be turned off for security reasons.\n- Prestage large files to reduce worker start time.\n- Launch third-party software in the background.\n- Customize the execution environment.\n\nFor more information about custom containers in Apache Beam, see the\n[Apache Beam custom container guide](https://beam.apache.org/documentation/runtime/environments/).\nFor examples of Python pipelines that use custom containers, see\n[Dataflow custom containers](https://github.com/GoogleCloudPlatform/python-docs-samples/tree/main/dataflow/custom-containers).\n\nNext steps\n----------\n\n- [Build custom container images](/dataflow/docs/guides/build-container-image)\n- [Build multi-architecture container images](/dataflow/docs/guides/multi-architecture-container)\n- [Run a Dataflow job in a custom container](/dataflow/docs/guides/run-custom-container)\n- [Troubleshoot custom containers](/dataflow/docs/guides/troubleshoot-custom-container)"]]