Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En esta página, se explica cómo ejecutar tu canalización de Dataflow con el tipo de GPU NVIDIA® L4.
El tipo de GPU L4 es útil para ejecutar canalizaciones de inferencia de aprendizaje automático.
Requisitos
Usa la versión 2.46 o posterior del SDK de Apache Beam. Se recomienda usar Apache Beam 2.50 o una versión posterior.
Necesitas una cuota de GPU L4 (NVIDIA_L4_GPUS) en la región en la que se ejecuta tu trabajo.
Para obtener más información, consulta Cuotas de GPU.
El tipo de GPU L4 solo está disponible con el tipo de máquina optimizado para acelerador G2.
Para obtener más información, consulta La serie de máquinas G2.
Las canalizaciones que usan el tipo de GPU L4 están sujetas a las limitaciones estándar de G2.
El tipo de GPU NVIDIA L4 usa la versión 525.0 o posterior del controlador NVIDIA y el kit de herramientas CUDA 12.0 o posterior. Cualquier código que uses en tu canalización debe ser compatible con la versión del controlador NVIDIA y de la versión del kit de herramientas CUDA. Por ejemplo, si usas PyTorch, debes usar la versión 23.01 o una posterior de PyTorch.
Ejecuta canalizaciones con el tipo de GPU NVIDIA® L4
GPU_COUNT: Es la cantidad de GPU que se usará. Cada tipo de máquina G2 tiene una cantidad fija de GPU NVIDIA L4. Para encontrar la cantidad correcta de GPU para tu tipo de máquina, consulta la columna Recuento de GPU en la tabla Tipos de máquinas estándar G2.
En el siguiente ejemplo de Dockerfile, se incluyen dependencias compatibles para una canalización que usa el tipo de GPU NVIDIA L4.
RUN apt-get -y update
RUN apt-get install [system packages]
# Install the SDK.
RUN pip install --no-cache-dir apache-beam[gcp]==2.51.0
# Install the machine learning dependencies.
RUN pip install --no-cache-dir tensorflow[and-cuda]
RUN pip install xgboost
RUN pip install transformers accelerate
(etc…..)
# Verify that the image doesn't have conflicting dependencies.
RUN pip check
# Copy files from official SDK image, including the script and dependencies.
COPY --from=apache/beam_python3.10_sdk:2.51.0 /opt/apache/beam /opt/apache/beam
# Set the entrypoint to Apache Beam SDK launcher.
ENTRYPOINT ["/opt/apache/beam/boot"]
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[[["\u003cp\u003eDataflow jobs using GPUs, like the NVIDIA L4, will incur charges as specified on the Dataflow pricing page and must use Dataflow Runner v2.\u003c/p\u003e\n"],["\u003cp\u003eTo utilize the NVIDIA L4 GPU type, Dataflow pipelines must use Apache Beam SDK version 2.46 or later, with 2.50 or later being recommended, and have the necessary L4 GPU quota.\u003c/p\u003e\n"],["\u003cp\u003eThe L4 GPU type is exclusive to the G2 accelerator-optimized machine type, and pipelines using it are subject to G2 standard limitations, which requires specification of the machine type and GPU count in pipeline options.\u003c/p\u003e\n"],["\u003cp\u003ePipelines using the NVIDIA L4 GPU type must be compatible with NVIDIA driver version 525.0 or later and CUDA toolkit version 12.0 or later, which can be ensured by using a custom container to manage dependencies.\u003c/p\u003e\n"],["\u003cp\u003eThe NVIDIA L4 GPU type is ideal for running machine learning inference pipelines on Dataflow, and a dockerfile is provided for users to implement it.\u003c/p\u003e\n"]]],[],null,["# Use the NVIDIA® L4 GPU type\n\n\u003cbr /\u003e\n\n| **Note:** The following considerations apply to this GA offering:\n|\n| - Jobs that use GPUs incur charges as specified in the Dataflow [pricing page](/dataflow/pricing).\n| - To use GPUs, your Dataflow job must use [Dataflow Runner v2](/dataflow/docs/runner-v2).\n\n\u003cbr /\u003e\n\nThe page explains how to run your Dataflow pipeline with the NVIDIA® L4 GPU type.\nThe L4 GPU type is useful for running machine learning inference pipelines.\n\nRequirements\n------------\n\n- Use the Apache Beam SDK version 2.46 or later. Apache Beam 2.50 or later is recommended.\n- You need L4 GPU quota (`NVIDIA_L4_GPUS`) in the region that your job runs in. For more information, see [GPU quotas](/compute/resource-usage#gpu_quota).\n- The L4 GPU type is available only with the G2 accelerator-optimized machine type. For more information, see [The G2 machine series](/compute/docs/accelerator-optimized-machines#g2-vms). Pipelines that use the L4 GPU type are subject to the [G2 standard limitations](/compute/docs/accelerator-optimized-machines#g2_standard_limitations).\n- The NVIDIA L4 GPU type uses the NVIDIA driver version 525.0 or later and the [CUDA toolkit](https://developer.nvidia.com/cuda-toolkit) version 12.0 or later. Any code that you use in your pipeline must be compatible with the NVIDIA driver version and CUDA toolkit version. For example, if you use PyTorch, you need to use PyTorch version 23.01 or later.\n\nRun pipelines with the NVIDIA® L4 GPU type\n------------------------------------------\n\nTo use the NVIDIA L4 GPU type, you need to include the following\n[pipeline options](/dataflow/docs/reference/pipeline-options) and\n[service options](/dataflow/docs/reference/service-options)\nin your pipeline code. \n\n### Java\n\n --workerMachineType=\u003cvar translate=\"no\"\u003eG2_MACHINE_TYPE\u003c/var\u003e\n --dataflowServiceOptions=\"worker_accelerator=type:nvidia-l4;count:\u003cvar translate=\"no\"\u003eGPU_COUNT\u003c/var\u003e;install-nvidia-driver\"\n\n### Python\n\n --machine_type=\u003cvar translate=\"no\"\u003eG2_MACHINE_TYPE\u003c/var\u003e\n --dataflow_service_options=\"worker_accelerator=type:nvidia-l4;count:\u003cvar translate=\"no\"\u003eGPU_COUNT\u003c/var\u003e;install-nvidia-driver\"\n\n### Go\n\n --worker_machine_type=\u003cvar translate=\"no\"\u003eG2_MACHINE_TYPE\u003c/var\u003e\n --dataflow_service_options=\"worker_accelerator=type:nvidia-l4;count:\u003cvar translate=\"no\"\u003eGPU_COUNT\u003c/var\u003e;install-nvidia-driver\"\n\nReplace the following values:\n\n- \u003cvar translate=\"no\"\u003eG2_MACHINE_TYPE\u003c/var\u003e: the [G2 machine type](/compute/docs/accelerator-optimized-machines#g2-standard-vms) to use\n- \u003cvar translate=\"no\"\u003eGPU_COUNT\u003c/var\u003e: The number of GPUs to use. Each G2 machine type has a fixed number of NVIDIA L4 GPUs. To find the correct number of GPUs for your machine type, see the **GPU count** column in the [G2 standard machine types](/compute/docs/accelerator-optimized-machines#g2-standard-vms) table.\n\nFor more information about running pipelines with\nGPUs, see [Run a pipeline with GPUs](/dataflow/docs/gpu/use-gpus).\n\nManage dependencies\n-------------------\n\nTo manage dependencies, use a custom container.\nFor more information, see\n[Use custom containers in Dataflow](/dataflow/docs/guides/using-custom-containers).\n\nThe following Dockerfile example contains compatible\ndependencies for a pipeline that uses the NVIDIA L4 GPU type. \n\n RUN apt-get -y update\n RUN apt-get install [system packages]\n\n # Install the SDK.\n RUN pip install --no-cache-dir apache-beam[gcp]==2.51.0\n # Install the machine learning dependencies.\n RUN pip install --no-cache-dir tensorflow[and-cuda]\n RUN pip install xgboost\n RUN pip install transformers accelerate\n (etc.....)\n # Verify that the image doesn't have conflicting dependencies.\n RUN pip check\n\n # Copy files from official SDK image, including the script and dependencies.\n COPY --from=apache/beam_python3.10_sdk:2.51.0 /opt/apache/beam /opt/apache/beam\n\n # Set the entrypoint to Apache Beam SDK launcher.\n ENTRYPOINT [\"/opt/apache/beam/boot\"]\n\nWhat's next\n-----------\n\n- Read about [best practices for working with Dataflow GPUs](/dataflow/docs/gpu/develop-with-gpus).\n- [Run a pipeline with GPUs](/dataflow/docs/gpu/use-gpus).\n- Learn more about [Dataflow ML](/dataflow/docs/machine-learning)."]]