Update table with DML

Update data in a BigQuery table using a DML query.

Code sample

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobId;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableDataWriteChannel;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableResult;
import com.google.cloud.bigquery.WriteChannelConfiguration;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.channels.Channels;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.UUID;

// Sample to update data in BigQuery tables using DML query
public class UpdateTableDml {

  public static void main(String[] args) throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    updateTableDml(datasetName, tableName);
  }

  public static void updateTableDml(String datasetName, String tableName)
      throws IOException, InterruptedException {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Load JSON file into UserSessions table
      TableId tableId = TableId.of(datasetName, tableName);

      WriteChannelConfiguration writeChannelConfiguration =
          WriteChannelConfiguration.newBuilder(tableId)
              .setFormatOptions(FormatOptions.json())
              .build();

      // Imports a local JSON file into a table.
      Path jsonPath =
          FileSystems.getDefault().getPath("src/test/resources", "userSessionsData.json");

      // The location and JobName must be specified; other fields can be auto-detected.
      String jobName = "jobId_" + UUID.randomUUID().toString();
      JobId jobId = JobId.newBuilder().setLocation("us").setJob(jobName).build();

      try (TableDataWriteChannel writer = bigquery.writer(jobId, writeChannelConfiguration);
          OutputStream stream = Channels.newOutputStream(writer)) {
        Files.copy(jsonPath, stream);
      }

      // Get the Job created by the TableDataWriteChannel and wait for it to complete.
      Job job = bigquery.getJob(jobId);
      Job completedJob = job.waitFor();
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to load local file to the table due to an error: \n"
                + job.getStatus().getError());
        return;
      }

      System.out.println(
          job.getStatistics().toString() + " userSessionsData json uploaded successfully");

      // Write a DML query to modify UserSessions table
      // To create DML query job to mask the last octet in every row's ip_address column
      String dmlQuery =
          String.format(
              "UPDATE `%s.%s` \n"
                  + "SET ip_address = REGEXP_REPLACE(ip_address, r\"(\\.[0-9]+)$\", \".0\")\n"
                  + "WHERE TRUE",
              datasetName, tableName);

      QueryJobConfiguration dmlQueryConfig = QueryJobConfiguration.newBuilder(dmlQuery).build();

      // Execute the query.
      TableResult result = bigquery.query(dmlQueryConfig);

      // Print the results.
      result.iterateAll().forEach(rows -> rows.forEach(row -> System.out.println(row.getValue())));

      System.out.println("Table updated successfully using DML");
    } catch (BigQueryException e) {
      System.out.println("Table update failed \n" + e.toString());
    }
  }
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import pathlib
from typing import Dict, Optional

from google.cloud import bigquery
from google.cloud.bigquery import enums


def load_from_newline_delimited_json(
    client: bigquery.Client,
    filepath: pathlib.Path,
    project_id: str,
    dataset_id: str,
    table_id: str,
) -> None:
    full_table_id = f"{project_id}.{dataset_id}.{table_id}"
    job_config = bigquery.LoadJobConfig()
    job_config.source_format = enums.SourceFormat.NEWLINE_DELIMITED_JSON
    job_config.schema = [
        bigquery.SchemaField("id", enums.SqlTypeNames.STRING),
        bigquery.SchemaField("user_id", enums.SqlTypeNames.INTEGER),
        bigquery.SchemaField("login_time", enums.SqlTypeNames.TIMESTAMP),
        bigquery.SchemaField("logout_time", enums.SqlTypeNames.TIMESTAMP),
        bigquery.SchemaField("ip_address", enums.SqlTypeNames.STRING),
    ]

    with open(filepath, "rb") as json_file:
        load_job = client.load_table_from_file(
            json_file, full_table_id, job_config=job_config
        )

    # Wait for load job to finish.
    load_job.result()


def update_with_dml(
    client: bigquery.Client, project_id: str, dataset_id: str, table_id: str
) -> int:
    query_text = f"""
    UPDATE `{project_id}.{dataset_id}.{table_id}`
    SET ip_address = REGEXP_REPLACE(ip_address, r"(\\.[0-9]+)$", ".0")
    WHERE TRUE
    """
    query_job = client.query(query_text)

    # Wait for query job to finish.
    query_job.result()

    assert query_job.num_dml_affected_rows is not None

    print(f"DML query modified {query_job.num_dml_affected_rows} rows.")
    return query_job.num_dml_affected_rows


def run_sample(override_values: Optional[Dict[str, str]] = None) -> int:
    if override_values is None:
        override_values = {}

    client = bigquery.Client()
    filepath = pathlib.Path(__file__).parent / "user_sessions_data.json"
    project_id = client.project
    dataset_id = "sample_db"
    table_id = "UserSessions"
    load_from_newline_delimited_json(client, filepath, project_id, dataset_id, table_id)
    return update_with_dml(client, project_id, dataset_id, table_id)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.