Nested repeated schema

Stay organized with collections Save and categorize content based on your preferences.

Specify nested and repeated columns in schema.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
)

// createTableComplexSchema demonstrates creating a BigQuery table and specifying a complex schema that includes
// an array of Struct types.
func createTableComplexSchema(w io.Writer, projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "id", Type: bigquery.StringFieldType},
		{Name: "first_name", Type: bigquery.StringFieldType},
		{Name: "last_name", Type: bigquery.StringFieldType},
		{Name: "dob", Type: bigquery.DateFieldType},
		{Name: "addresses",
			Type:     bigquery.RecordFieldType,
			Repeated: true,
			Schema: bigquery.Schema{
				{Name: "status", Type: bigquery.StringFieldType},
				{Name: "address", Type: bigquery.StringFieldType},
				{Name: "city", Type: bigquery.StringFieldType},
				{Name: "state", Type: bigquery.StringFieldType},
				{Name: "zip", Type: bigquery.StringFieldType},
				{Name: "numberOfYears", Type: bigquery.StringFieldType},
			}},
	}

	metaData := &bigquery.TableMetadata{
		Schema: sampleSchema,
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metaData); err != nil {
		return err
	}
	fmt.Fprintf(w, "created table %s\n", tableRef.FullyQualifiedName())
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Field.Mode;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

public class NestedRepeatedSchema {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    createTableWithNestedRepeatedSchema(datasetName, tableName);
  }

  public static void createTableWithNestedRepeatedSchema(String datasetName, String tableName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      Schema schema =
          Schema.of(
              Field.of("id", StandardSQLTypeName.STRING),
              Field.of("first_name", StandardSQLTypeName.STRING),
              Field.of("last_name", StandardSQLTypeName.STRING),
              Field.of("dob", StandardSQLTypeName.DATE),
              // create the nested and repeated field
              Field.newBuilder(
                      "addresses",
                      StandardSQLTypeName.STRUCT,
                      Field.of("status", StandardSQLTypeName.STRING),
                      Field.of("address", StandardSQLTypeName.STRING),
                      Field.of("city", StandardSQLTypeName.STRING),
                      Field.of("state", StandardSQLTypeName.STRING),
                      Field.of("zip", StandardSQLTypeName.STRING),
                      Field.of("numberOfYears", StandardSQLTypeName.STRING))
                  .setMode(Mode.REPEATED)
                  .build());

      TableDefinition tableDefinition = StandardTableDefinition.of(schema);
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Table with nested and repeated schema created successfully");
    } catch (BigQueryException e) {
      System.out.println("Table was not created. \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function nestedRepeatedSchema() {
  // Creates a new table named "my_table" in "my_dataset"
  // with nested and repeated columns in schema.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";
  // const schema = [
  //   {name: 'Name', type: 'STRING', mode: 'REQUIRED'},
  //   {
  //     name: 'Addresses',
  //     type: 'RECORD',
  //     mode: 'REPEATED',
  //     fields: [
  //       {name: 'Address', type: 'STRING'},
  //       {name: 'City', type: 'STRING'},
  //       {name: 'State', type: 'STRING'},
  //       {name: 'Zip', type: 'STRING'},
  //     ],
  //   },
  // ];

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    location: 'US',
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created.`);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

# from google.cloud import bigquery
# client = bigquery.Client()
# project = client.project
# dataset_ref = bigquery.DatasetReference(project, 'my_dataset')

schema = [
    bigquery.SchemaField("id", "STRING", mode="NULLABLE"),
    bigquery.SchemaField("first_name", "STRING", mode="NULLABLE"),
    bigquery.SchemaField("last_name", "STRING", mode="NULLABLE"),
    bigquery.SchemaField("dob", "DATE", mode="NULLABLE"),
    bigquery.SchemaField(
        "addresses",
        "RECORD",
        mode="REPEATED",
        fields=[
            bigquery.SchemaField("status", "STRING", mode="NULLABLE"),
            bigquery.SchemaField("address", "STRING", mode="NULLABLE"),
            bigquery.SchemaField("city", "STRING", mode="NULLABLE"),
            bigquery.SchemaField("state", "STRING", mode="NULLABLE"),
            bigquery.SchemaField("zip", "STRING", mode="NULLABLE"),
            bigquery.SchemaField("numberOfYears", "STRING", mode="NULLABLE"),
        ],
    ),
]
table_ref = dataset_ref.table("my_table")
table = bigquery.Table(table_ref, schema=schema)
table = client.create_table(table)  # API request

print("Created table {}".format(table.full_table_id))

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.