Répertorier par libellé

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Répertorier les ensembles de données en filtrant par libellés.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Go.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// listDatasetsByLabel demonstrates walking the collection of datasets in a project, and
// filtering that list to a subset that has specific label metadata.
func listDatasetsByLabel(w io.Writer, projectID string) error {
	// projectID := "my-project-id"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	it := client.Datasets(ctx)
	it.Filter = "labels.color:green"
	for {
		dataset, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintf(w, "dataset: %s\n", dataset.DatasetID)
	}
	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Java.

import com.google.api.gax.paging.Page;
import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Dataset;

// Sample to get list of datasets by label
public class ListDatasetsByLabel {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "MY_PROJECT_ID";
    String filter = "MY_LABEL_FILTER";
    listDatasetsByLabel(projectId, filter);
  }

  public static void listDatasetsByLabel(String projectId, String filter) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      Page<Dataset> datasets =
          bigquery.listDatasets(
              projectId,
              BigQuery.DatasetListOption.pageSize(100),
              BigQuery.DatasetListOption.labelFilter(filter)); // "labels.color:green"
      if (datasets == null) {
        System.out.println("Dataset does not contain any models");
        return;
      }
      datasets
          .iterateAll()
          .forEach(
              dataset -> System.out.printf("Success! Dataset ID: %s ", dataset.getDatasetId()));
    } catch (BigQueryException e) {
      System.out.println("Project does not contain any datasets \n" + e.toString());
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Node.js.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function listDatasetsByLabel() {
  // Lists all datasets in current GCP project, filtering by label color:green.

  const options = {
    filter: 'labels.color:green',
  };
  // Lists all datasets in the specified project
  const [datasets] = await bigquery.getDatasets(options);

  console.log('Datasets:');
  datasets.forEach(dataset => console.log(dataset.id));
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de BigQuery : Utiliser les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API BigQuery pour Python.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

label_filter = "labels.color:green"
datasets = list(client.list_datasets(filter=label_filter))  # Make an API request.

if datasets:
    print("Datasets filtered by {}:".format(label_filter))
    for dataset in datasets:
        print("\t{}.{}".format(dataset.project, dataset.dataset_id))
else:
    print("No datasets found with this filter.")

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.