The Namespaces API allows you to easily enable multitenancy in your application, simply by selecting a namespace string for each tenant
in appengine_config.py
using the namespace_manager
package.
Setting the current namespace
You can get, set, and validate namespaces
using the namespace_manager
package.
The namespace
manager allows you to set a current namespace for namespace-enabled APIs. You set a current namespace up-front
in appengine_config.py
and the Datastore and memcache automatically use that namespace.
Most App Engine developers will use their Google Workspace (formerly G Suite) domain as the current namespace. Google Workspace lets you deploy your app to any domain that you own, so you can easily use this mechanism to configure different namespaces for different domains. Then, you can use those separate namespaces to segregate data across the domains. For more information, see Mapping Custom Domains.
The following code sample shows you how to set the current namespace to the Google Workspace domain that was used to map the URL. Notably, this string will be the same for all URLs mapped via the same Google Workspace domain.
To set a namespace in Python, use the App Engine configuration system appengine_config.py
in your application's root directory. The following simple example demonstrates how to use your Google Workspace domain as the current namespace:
from google.appengine.api import namespace_manager
# Called only if the current namespace is not set.
def namespace_manager_default_namespace_for_request():
# The returned string will be used as the Google Apps domain.
return namespace_manager.google_apps_namespace()
If you do not specify a value for namespace
, the namespace is set to an empty string. The namespace
string is arbitrary, but also limited to a maximum of 100 alphanumeric characters, periods, underscores, and hyphens. More explicitly, namespace strings must match the regular expression [0-9A-Za-z._-]{0,100}
.
By convention, all namespaces starting with "_
" (underscore) are reserved for system use. This system namespace rule is not enforced, but you could easily encounter undefined negative consequences if you do not follow it.
appengine_config.py
, see Python Module Configuration.
Avoiding data leaks
One of the risks commonly associated with multitenant apps is the danger that data will leak across namespaces. Unintended data leaks can arise from many sources, including:
- Using namespaces with App Engine APIs that do not yet support namespaces. For example, Blobstore does not support namespaces. If you use Namespaces with Blobstore, you need to avoid using Blobstore queries for end user requests, or Blobstore keys from untrusted sources.
- Using an external storage medium (instead of memcache and Datastore), via
URL Fetch
or some other mechanism, without providing a compartmentalization scheme for namespaces. - Setting a namespace based on a user's email domain. In most cases, you don't want all email addresses of a domain to access a namespace. Using the email domain also prevents your application from using a namespace until the user is logged in.
Deploying namespaces
The following sections describe how to deploy namespaces with other App Engine tools and APIs.
Creating namespaces on a per user basis
Some applications need to create namespaces on a per-user basis. If you want to compartmentalize data at the user level for logged-in users, consider using
User.user_id()
, which returns a unique, permanent ID for the user. The following code sample demonstrates how to use the Users API for this purpose:
from google.appengine.api import users
def namespace_manager_default_namespace_for_request():
# assumes the user is logged in.
return users.get_current_user().user_id()
Typically, apps that create namespaces on a per-user basis also provide specific landing pages to different users. In these cases, the application needs to provide a URL scheme dictating which landing page to display to a user.
Using namespaces with the Datastore
By default, the Datastore uses the current namespace setting in the namespace manager for Datastore requests. The API applies this current namespace to
Key
or Query
objects when they are created. Therefore, you need to be careful if an application stores Key
or Query
objects in serialized forms, since the namespace is preserved in those serializations.
If you are using deserialized Key
and Query
objects, make sure that they behave as intended. Most simple applications that use Datastore (put
/query
/get
) without using other storage mechanisms will work as expected by setting the current namespace before calling any Datastore API.
Query
and Key
objects demonstrate the following, unique behaviors with regard to namespaces:
Query
andKey
objects inherit the current namespace when constructed, unless you set an explicit namespace.- When an application creates a new
Key
from an ancestor, the newKey
inherits the namespace of the ancestor.
Using namespaces with Memcache
By default, memcache uses the current namespace from the namespace manager for memcache requests. In most cases, you do not need to explicitly set a namespace in the memcache, and doing so could introduce unexpected bugs.
However, there are some unique instances where it is appropriate to explicitly set a namespace in the memcache. For example, your application might have common data shared across all namespaces (such as a table containing country codes).
Using the Python API for memcache, you can get the current namespace from the namespace manager or set it explicitly when you create the memcache service. The example below sets the namespace explicitly when you store a value in memcache:// Store an entry to the memcache explicitly memcache.add("key", data, namespace='abc')
Using namespaces with the Task Queue
By default, push queues use the current namespace as set in the namespace manager at the time the task was created. In most cases, you do not need to explicitly set a namespace in the task queue, and doing so could introduce unexpected bugs.
Task names are shared across all namespaces. You cannot create two tasks of the same name, even if they use different namespaces. If you wish to use the same task name for many namespaces, you can simply append each namespace to the task name.
When a new task calls the task queue
add()
method, the task queue copies the current namespace and (if applicable) the Google Workspace domain from the namespace manager. When the task is executed, the current namespace and Google Workspace namespace are restored.
If the current namespace is not set in the originating request (in other words, if get_namespace()
returns ''
), you can use set_namespace()
to set the current namespace for the task.
There are some unique instances where it is appropriate to explicitly set a namespace for a task that works across all namespaces. For example, you might create a task that aggregates usage statistics across all namespaces. You could then explicitly set the namespace of the task.
Using namespaces with the Blobstore
The Blobstore is not segmented by namespace. To preserve a namespace in Blobstore, you need to access Blobstore via a storage medium that is aware of the namespace (currently only memcache, Datastore, and task queue). For example, if a blob's Key
is stored in a Datastore entity, you can access it with a Datastore Key
or Query
that is aware of the namespace.
If the application is accessing Blobstore via keys stored in namespace-aware storage, the Blobstore itself does not need to be segmented by namespace. Applications must avoid blob leaks between namespaces by:
- Not using
BlobInfo.gql()
for end-user requests. You can use BlobInfo queries for administrative requests (such as generating reports about all the applications blobs), but using it for end-user requests may result in data leaks because all BlobInfo records are not compartmentalized by namespace. - Not using Blobstore keys from untrusted sources.
Setting namespaces for Datastore Queries
In the Google Cloud console, you can set the namespace for Datastore queries.
If you don't want to use the default, select the namespace you want to use from the drop-down.
Using namespaces with the Bulk Loader
The bulk loader supports a --namespace=NAMESPACE
flag that allows you to specify the namespace to use. Each namespace is handled separately and, if you want to access all namespaces, you will need to iterate through them.
Using namespaces with Search
When you create a new instance of Index
, it is assigned to the current namespace by default:
# set the current namespace
namespace_manager.set_namespace("aSpace")
index = search.Index(name="myIndex")
# index namespace is now fixed to "aSpace"
You can also assign a namespace explicitly in the constructor:
index = search.Index(name="myIndex", namespace="aSpace")
Once you've created an index spec, its namespace cannot be changed:
# change the current namespace
namespace_manager.set_namespace("anotherSpace")
# the namespaceof 'index' is still "aSpace" because it was bound at create time
index.search('hello')